Как рассчитать количество возможных комбинаций. Методы решения комбинаторных задач

КОМБИНАТОРИКА

Комбинаторика - раздел математики, который изучает задачи выбора и расположения элементов из некоторого основного множества в соответствии с заданными правилами. Формулы и принципы комбинаторики используются в теории вероятностей для подсчета вероятности случайных событий и, соответственно, получения законов распределения случайных величин. Это, в свою очередь, позволяет исследовать закономерности массовых случайных явлений, что является весьма важным для правильного понимания статистических закономерностей, проявляющихся в природе и технике.

Правила сложения и умножения в комбинаторике

Правило суммы. Если два действия А и В взаимно исключают друг друга, причем действие А можно выполнить m способами, а В - n способами, то выполнить одно любое из этих действий (либо А, либо В) можно n + m способами.

Пример 1.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить одного дежурного?

Решение

Дежурным можно назначить либо мальчика, либо девочку, т.е. дежурным может быть любой из 16 мальчиков, либо любая из 10 девочек.

По правилу суммы получаем, что одного дежурного можно назначить 16+10=26 способами.

Правило произведения. Пусть требуется выполнить последовательно k действий. Если первое действие можно выполнить n 1 способами, второе действие n 2 способами, третье - n 3 способами и так до k-го действия, которое можно выполнить n k способами, то все k действий вместе могут быть выполнены:

способами.

Пример 2.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить двух дежурных?

Решение

Первым дежурным можно назначить либо мальчика, либо девочку. Т.к. в классе учится 16 мальчиков и 10 девочек, то назначить первого дежурного можно 16+10=26 способами.

После того, как мы выбрали первого дежурного, второго мы можем выбрать из оставшихся 25 человек, т.е. 25-ю способами.

По теореме умножения двое дежурных могут быть выбраны 26*25=650 способами.

Сочетания без повторений. Сочетания с повторениями

Классической задачей комбинаторики является задача о числе сочетаний без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать m из n различных предметов ?

Пример 3.

Необходимо выбрать в подарок 4 из 10 имеющихся различных книг. Сколькими способами можно это сделать?

Решение

Нам из 10 книг нужно выбрать 4, причем порядок выбора не имеет значения. Таким образом, нужно найти число сочетаний из 10 элементов по 4:

.

Рассмотрим задачу о числе сочетаний с повторениями: имеется по r одинаковых предметов каждого из n различных типов; сколькими способами можно выбрать m () из этих (n*r) предметов?

.

Пример 4.

В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?

Решение

Т.к. среди 7 пирожных могут быть пирожные одного сорта, то число способов, которыми можно купить 7 пирожных, определяется числом сочетаний с повторениями из 7 по 4.

.

Размещения без повторений. Размещения с повторениями

Классической задачей комбинаторики является задача о числе размещений без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n различных предметов?

Пример 5.

В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить четыре фотографии. Сколькими способами можно это сделать, если ни одна страница газеты не должна содержать более одной фотографии?

Решение.

В данной задаче мы не просто выбираем фотографии, а размещаем их на определенных страницах газеты, причем каждая страница газеты должна содержать не более одной фотографии. Таким образом, задача сводится к классической задаче об определении числа размещений без повторений из 12 элементов по 4 элемента:

Таким образом, 4 фотографии на 12 страницах можно расположить 11880 способами.

Также классической задачей комбинаторики является задача о числе размещений с повторениями, содержание которой можно выразить вопросом: сколькими способами можно вы б рать и разместить по m различным местам m из n предметов, с реди которых есть одинаковые?

Пример 6.

У мальчика остались от набора для настольной игры штампы с цифрами 1, 3 и 7. Он решил с помощью этих штампов нанести на все книги пятизначные номера- составить каталог. Сколько различных пятизначных номеров может составить мальчик?

Перестановки без повторений . Перестановки с повторениями

Классической задачей комбинаторики является задача о числе перестановок без повторения, содержание которой можно выразить вопросом: сколькими способами можно разместить n различных предметов на n различных местах?

Пример 7.

Сколько можно составить четырехбуквенных «слов» из букв слова«брак»?

Решение

Генеральной совокупностью являются 4 буквы слова «брак» (б, р, а, к). Число «слов» определяется перестановками этих 4 букв, т. е.

Для случая, когда среди выбираемых n элементов есть одинаковые (выборка с возвращением), задачу о числе перестановок с повторениями можно выразить вопросом: сколькими способами можно переставить n предметов, расположенных на n различных местах, если среди n предметов имеются k различных типов (k < n), т. е. есть одинаковые предметы.

Пример 8.

Сколько разных буквосочетаний можно сделать из букв слова «Миссисипи»?

Решение

Здесь 1 буква «м», 4 буквы «и», 3 буквы «c» и 1 буква «п», всего 9 букв. Следовательно, число перестановок с повторениями равно

ОПОРНЫЙ КОНСПЕКТ ПО РАЗДЕЛУ "КОМБИНАТОРИКА"

  • 2.1. Относительная частота. Устойчивость относительной частоты
  • 2.2. Ограниченность классического определения вероятности. Статистическая вероятность
  • 2.3. Геометрические вероятности
  • 2.4. Теорема сложения вероятностей
  • 2.5. Полная группа событий
  • 2.6. Противоположные события
  • 2.7. Принцип практической невозможности маловероятных событий
  • 2.8. Произведение событий. Условная вероятность
  • 2.9. Теорема умножения вероятностей
  • 2.10. Независимые события. Теорема умножения для независимых событий
  • 2.10. Вероятность появления хотя бы одного события
  • Лекция №3 следствия теорем сложения и умножения
  • 3.1. Теорема сложения вероятностей совместных событий
  • 3.2. Формула полной вероятности
  • 3.3. Вероятность гипотез. Формулы Бейеса
  • 4. Повторение испытаний
  • 4.1. Формула Бернулли
  • 4.2. Предельные теоремы в схеме Бернулли
  • 4.3. Локальная и интегральная теоремы Муавра-Лапласа
  • 4.3. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях
  • 5. Случайные величины
  • 5.1. Понятие случайной величины. Закон распределения случайной величины
  • 5.2. Закон распределения дискретной случайной величины. Многоугольник распределения
  • 5.3. Биномиальное распределение
  • 5.4. Распределение Пуассона
  • 5.5. Геометрическое распределение
  • 5.6. Гипергеометрическое распределение
  • 6. Математическое ожидание дискретной случайной величины
  • 6.1. Числовые характеристики дискретных случайных величин
  • 6.2. Математическое ожидание дискретной случайной величины
  • 6.3. Вероятностный смысл математического ожидания
  • 6.4. Свойства математического ожидания
  • 6.5. Математическое ожидание числа появлений события в независимых испытаниях
  • 7. Дисперсия дискретной случайной величины
  • 7.1. Целесообразность введения числовой характеристики рассеяния случайной величины
  • 7.2. Отклонение случайной величины от ее математического ожидания
  • 7.3. Дисперсия дискретной случайной величины
  • 7.4. Формула для вычисления дисперсии
  • 7.5. Свойства дисперсии
  • 7.6. Дисперсия числа появлений события в независимых испытаниях
  • 7.7. Среднее квадратическое отклонение
  • 7.8. Среднее квадратическое отклонение суммы взаимно независимых случайных величин
  • 7.9. Одинаково распределенные взаимно независимые случайные величины
  • 7.10. Начальные и центральные теоретические моменты
  • 8. Закон больших чисел
  • 8.1. Предварительные замечания
  • 8.2. Неравенство Чебышева
  • 8.3. Теорема Чебышева
  • 8.4. Сущность теоремы Чебышева
  • 8.5. Значение теоремы Чебышева для практики
  • 8.6. Теорема Бернулли
  • Функция распределения вероятностей случайной величины
  • 9.1. Определение функции распределения
  • 9.2. Свойства функции распределения
  • 9.3. График функции распределения
  • 10. Плотность распределения вероятностей непрерывной случайной величины
  • 10.1. Определение плотности распределения
  • 10.2. Вероятность попадания непрерывной случайной величины в заданный интервал
  • 10.3. Закон равномерного распределения вероятностей
  • 11. Нормальное распределение
  • 11.1. Числовые характеристики непрерывных случайных величин
  • 11.2. Нормальное распределение
  • 11.3. Нормальная кривая
  • 11.4. Влияние параметров нормального распределения на форму нормальной кривой
  • 11.5. Вероятность попадания в заданный интервал нормальной случайной величины
  • 11.6. Вычисление вероятности заданного отклонения
  • 11.7. Правило трех сигм
  • 11.8. Понятие о теореме Ляпунова. Формулировка центральной предельной теоремы
  • 11.9. Оценка отклонения теоретического распределения от нормального. Асимметрия и эксцесс
  • 11.10. Функция одного случайного аргумента и ее распределение
  • 11.11. Математическое ожидание функции одного случайного аргумента
  • 11.12. Функция двух случайных аргументов. Распределение суммы независимых слагаемых. Устойчивость нормального распределения
  • 11.13. Распределение «хи квадрат»
  • 11.14. Распределение Стьюдента
  • 11.15. Распределение f Фишера – Снедекора
  • 12. Показательное распределение
  • 12.1. Определение показательного распределения
  • 12.2. Вероятность попадания в заданный интервал показательно распределенной случайной величины
  • § 3. Числовые характеристики показательного распределения
  • 12.4. Функция надежности
  • 12.5. Показательный закон надежности
  • 12.6. Характеристическое свойство показательного закона надежности
  • 1.7. Основные формулы комбинаторики

    При нахождении вероятностей в схеме классического определения широко используется комбинаторика, поэтому напомним наиболее употребительные определения и формулы для вычисления.

    Комбинаторика изучает количества комбинаций, подчиненных определенным условиям, которые можно составить из элементов, безразлично какой природы, заданного конечного множества.

    Перестановками называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их расположения. Число всех возможных перестановок

    Р n = n !

    Заметим, что удобно рассматривать 0!, полагая, по определению, 0! = 1.

    Пример . Сколько трехзначных чисел можно составить из цифр 1, 2, 3, если каждая цифра входит в изображение числа только один раз?

    Решение . Искомое число трехзначных чисел Р 3 = 3! = 123 = 6.

    Размещениями n различных элементов по m элементов, которые отличаются либо составом элементов, либо их порядком. Число всех возможных размещений

    Пример . Сколько можно составить сигналов из 6 флажков различного цвета, взятых по 2?

    Решение . Искомое число сигналов
    .

    Сочетаниями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются хотя бы одним элементом. Число сочетаний

    .

    Пример . Сколькими способами можно выбрать две детали из ящика, содержащего 10 деталей?

    Решение . Искомое число способов
    .

    Подчеркнем, что числа размещений, перестановок и сочетаний связаны равенством

    Замечание . Выше предполагалось, что все n элементов различны. Если же некоторые элементы повторяются, то в этом случае комбинации с повторениями вычисляют по другим формулам. Например, если среди n элементов есть n 1 элементов одного вида, n 2 элементов другого вида и т. д., то число перестановок с повторениями

    ,

    где n 1 + n 2 + ... = n .

    При решении задач комбинаторики используют следующие правила:

    1. Правило суммы. Если некоторый объект A может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А , либо В можно m + n способами.

    2. Правило произведения. Если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А , В ) в указанном порядке может быть выбрана mn способами.

    Приведем несколько примеров непосредственного вычисления вероятностей.

    Пример 1. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.

    Решение. Обозначим через А событие – набрана нужная цифра. Абонент мог набрать любую из 10 цифр, поэтому общее число возможных элементарных исходов равно 10. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию А лишь один исход (нужная цифра лишь одна). Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

    Р (А )=1/10.

    Пример 2. Набирая номер телефона, абонент забыл последние две цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.

    Решение. Обозначим через В событие – набраны две нужные цифры. Всего можно набрать столько различных цифр, сколько может быть составлено размещений из десяти цифр по две, т.е.
    . Таким образом, общее число возможных элементарных исходов равно 90. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию В лишь один исход. Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

    Р (В )=1/90.

    Пример 3. Указать ошибку «решения» задачи: «Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков равна 4 (событие А )».

    Решение. Всего возможны 2 исхода испытания: сумма выпавших очков равна 4, сумма выпавших очков не равна 4. Событию А благоприятствует один исход; общее число исходов равно двум. Следовательно, искомая вероятность

    Р (А ) = 1/2.

    Ошибка этого решения состоит в том, что рассматриваемые исходы не являются равновозможными.

    Правильное решение . Общее число равновозможных исходов испытания равно 66 = 36 (каждое число выпавших очков на одной кости может сочетаться со всеми числами очков другой кости). Среди этих исходов благоприятствуют событию А только 3 исхода: (1; 3), (3; 1), (2; 2) (в скобках указаны числа выпавших очков). Следовательно, искомая вероятность

    Р (А ) = 3/36 = 1/12.

    Пример 4. В партии из 10 деталей 7 стандартных. Найти вероятность того, что среди шести взятых наудачу деталей 4 стандартных.

    Решение. Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 6 деталей из 10, т. е. числу сочетаний из 10 элементов но 6 элементов ().

    Определим число исходов, благоприятствующих интересующему нас событию А (среди шести взятых деталей 4 стандартных). Четыре стандартные детали можно взять на семи стандартных деталей способами; при этом остальные 6 – 4 = 2 детали должны быть нестандартными; взять же 2 нестандартные детали из 10 – 7 = 3 нестандартных деталей можноспособами. Следовательно, число благоприятствующих исходов равно
    .

    Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

    Комбинаторика - раздел математики. Основные понятия и формулы комбинаторики как науки применяются во всех сферах жизни.

    Неудивительно, что она включена в программу 11 класса, а также во вступительные испытания во многих ВУЗах РФ. Ее основы лежат в прикладном искусстве многих сфер деятельности человека.

    Ее история насчитывает более 6 веков. Первые комбинаторные задачи появились в трудах философов и математиков Средневековья.

    Представители того научного мира пытались найти методы решения таких задач, их базовые правила и понятия, утвердить уникальные формулы и уравнения для тех, кто ещё не встречался с ними. Такая информация в наше время называется информацией «для чайников».

    Попытаемся разобраться в аспектах этой области науки: каковы элементы, свойства, правила, методы и основное ее применение в нашей жизни? Конечно, всю область в одной статье невозможно охватить. Поэтому ниже будет представлено всё самое основное.

    Что такое комбинаторика в математике

    Суть этого термина дают книги прошлых лет: это раздел математики, занимающийся операциями со множеством элементов.

    В интернете есть учебники по информатике и математике для детей, школьников, сборники материалов и задач для начинающих, где в доступном виде объяснена «занимательная» комбинаторика. Нужно твердо выяснить, как решать подобные задачи.

    В младших классах задачи на эту тему решают на дополнительных кружках, а в школах с углубленным изучением математики — на основных уроках. К тому же, задачи по комбинаторике включены в олимпиады всех уровней.

    Основные понятия

    Их несколько:

    1. Элемент – любой объект или явление, входящий в искомое множество.
    2. Сочетание – подмножества, находящиеся в произвольном порядке в исходном множестве.
    3. Перестановка – элементы во множестве находятся в строго определенном порядке.
    4. Размещение – упорядоченные подмножества в исходном множестве.

    Правило произведения

    Является одним из основных правил при решении таких задач и звучит так:

    При выборе элемента А из n способов и выборе элемента В из m способов верно утверждение, что выбрать пару А и В одновременно можно n * m способами.

    Рассмотрим на конкретных примерах.

    Задача №1.

    В коробке лежит 2 мяча и 6 скакалок. Сколько существует способов достать 1 мяч и 1 скакалку?

    Ответ прост: 2 * 6 = 12.

    Задача №2.

    Есть 1 кубик, 2 шарика, 3 цветка и 4 конфеты. Сколькими способами можно вытянуть кубик, шарик, цветок и конфету?

    Решение аналогично: 1 * 2 * 3 * 4 = 24.

    Причем левую часть можно записать гораздо проще: 4!

    ! в данном случае является не знаком препинания, а факториалом. С помощью него можно вычислить более сложные варианты и решать трудные задачи (существуют разные формулы, но об этом позже).

    Задача №3.

    Сколько двузначных чисел можно составить из 2 цифр?

    Ответ: 2! = 2.

    Задача №4.

    Сколько десятизначных чисел можно составить из 10 цифр?

    Правило суммы

    Тоже является базовым правилом комбинаторики.

    Если А можно выбрать n раз, а В - m раз, то А или В можно выбрать (n + m ) раз.

    Задача №5.

    В коробке лежат 5 красных, 3 желтых, 7 зеленых, 9 черных карандашей. Сколько есть способов вытащить 1 любой карандаш?

    Ответ: 5 + 3 + 7 + 9 = 24.

    Сочетания с повторениями и без повторений

    Под этим термином понимают комбинации в произвольном порядке из множества n по m элементов.

    Число сочетаний равно количеству таких комбинаций.

    Задача №6.

    В коробке находится 4 разных фрукта. Сколькими способами можно достать одновременно 2 разных фрукта?

    Решение простое:

    Где 4! – комбинация из 4 элементов.

    С повторениями чуть сложней, комбинации считаются по такой формуле:

    Задача №7.

    Возьмем тот же самый случай, но при условии, что один фрукт возвращается в коробку.

    В этом случае:

    Размещения с повторениями и без повторений

    Под этим определением понимают набор m элементов из множества n элементов.

    Задача №8.

    Из 3 цифр надо выбрать 2, чтобы получались разные двузначные числа. Сколько вариантов?

    Ответ прост:

    А как же быть с повторениями? Здесь каждый элемент может размещаться несколько раз! В таком случае общая формула будет выглядеть следующим образом:

    Задача №9.

    Из 12 букв латинского алфавита и 10 цифр натурального ряда надо найти все варианты составления автомобильного кода региона.

    Перестановки с повторениями и без повторений

    Под этим термином понимают все возможные комбинации из n элементного множества.

    Задача №10.

    Сколько возможных пятизначных чисел можно составить из 5цифр? А шестизначных из 6 цифр? Семизначных из 7 цифр?

    Решения, согласно вышеприведенной формуле, следующие:

    А как же быть с повторениями? Если в таком множестве есть одинаковые по своей значимости элементы, то перестановок будет меньше!

    Задача №11.

    В коробке есть 3 одинаковых карандаша и одна ручка. Сколько перестановок можно сделать?

    Ответ прост: 4! / (3! * 1!) = 4.

    Комбинаторные задачи с решениями

    Примеры всех возможных типов задач с решениями были даны выше. Здесь попробуем разобраться с более сложными случаями, встречающимися в нашей жизни.

    Типы задач Что требуется найти Методы решения
    Магический квадрат Фигура, в которой сумма чисел в рядах и столбцах должна быть одинакова (его разновидность – латинский квадрат). Рекуррентные соотношения. Решается подобная же задача, но с гораздо меньшим множеством элементов по известным правилам и формулам.
    Задача размещения Стандартная производственная задача (например, в лоскутной технике) — найти возможные способы разложения количества продуктов в ячейки в определенном порядке. Включения и исключения. Как правило, применяется при доказательстве различных выражений.
    Задачи про торговцев Суть — найти все возможные пути прохождения людей из пункта А в пункт В. Траектории. Для этого вида задач характерно геометрическое построение возможных способов решения.

    Заключение

    Стоит изучать эту науку, поскольку в век быстрой модернизации технологий потребуются специалисты, способные предоставить различные решения тех или иных практических задач.

    Основные правила комбинаторики.

    Комбинаторика - это раздел математики, изучающий способы расположения объектов в соответствии со специальными правилами и методы подсчета числа всех возможных способов. Правило умножения. Если некоторый выбор A можно осуществить m способами, а для каждого из них некоторый другой выбор B можно осуществить n способами, то выбор A и B (в указанном порядке) можно осуществить m×n способами. Пример 1. На гору ведут 6 дорог. Сколькими способами можно подняться на гору и спуститься с горы, если подъем и спуск должен быть по разным дорогам? Решение. Дорогу на гору можно выбрать 6-ю способами, так как подъем и спуск должны быть по разным дорогам, то выбрать дорогу для спуска можно 5-ю способами. Тогда по правилу умножения число способов выбора дороги для подъема и спуска равно 6×5=30. Правило сложения. Если некоторый выбор A можно осуществить m способами, а выбор B можно осуществить n способами, то выбор A или B можно осуществить m+n способами. Пример 2. В ящике имеется 6 красных карандашей, 5 синих и 3 простых карандаша. Сколькими способами можно выбрать цветной карандаш? Решение. Цветной карандаш - это красный или синий, следовательно, по правилу сложения число способов выбора цветного карандаша равно 6+5=11. Замечание. Данные правила можно обобщить на большее число выборов. Вопрос. Сколько основных правил комбинаторики существует?

    Перестановки.

    Определение 1. Множество называется упорядоченным, если каждому элементу этого множества поставлено в соответствие некоторое натуральное число от 1 до n, где n - это число элементов данного множества, причем разным элементам поставлены в соответствие разные числа.

    Упорядоченные множества считаются различными, если они отличаются либо своими элементами, либо их порядком. Определение 2. Различные упорядоченные множества, составленные из элементов данного множества, отличающиеся лишь порядком элементов, называются его перестановками. Пример 3. Рассмотрим множество M={a,b,c}. Это множество из трех элементов. Составим его различные перестановки: (a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a). Получили 6 перестановок. P n - число всех перестановок множества из n элементов.

    P n =n! (1), где

    n!=1·2·3·...·n (читается "н факториал"). Замечание. 0!=1; (n+1)!=n!·(n+1) . Пример 4. Сколько шестизначных чисел, кратных пяти, можно составить из цифр 0,1,2,3,4,5, при условии, что в числе нет одинаковых цифр? Решение. Числа, кратные пяти(делящиеся на пять), оканчиваются либо на 0, либо на 5. Если последняя цифра числа 0, то остальные цифры можно располагать в любом порядке, получим перестановки из пяти элементов, их P 5 =5!=120. Если на конце 5, то остальные можно расположить P 5 =120 способами, но среди них не подходят те, которые начинаются на 0, так как это будут не шестизначные числа. а пятизначные, данных чисел P 4 =4!=24.Тогда требуемых чисел будет 120+120-24=216.

    Вопрос. Сколько существует перестановок из шести элементов?

    Ваш ответ : 720

    Перестановки с повторениями.

    Если взять цифры 1, 2, 3, 4, то из них можно составить 24 перестановки. Но если взять четыре цифры 1, 1, 2, 2, то можно получить только следующие различные перестановки: (1,1,2,2),(1,2,1,2),(1,2,2,1),((2,2,1,1),(2,1,2,1),(2,1,1,2), то есть шесть перестановок, их в 4 раза меньше, чем перестановок из четырех различных чисел, так как перестановки, в которых меняются местами одинаковые числа - это не новые перестановки, их 2!·2!=4. Рассмотрим задачу в общем виде:пусть имеется множество из элементов, в котором элементы встречаются раз, элементы встречаются раз,..., элементы встречаются раз, причем .

    Определение 3. Перестановки с повторениями - это перестановки из элементов данного множества, в которых элементы повторяются. - число всех перестановок с повторениями. Число перестановок, не меняющих данную перестановку с повторениями равно , а чисел можно переставлять способами, поэтому получаем следующую формулу для вычисления числа перестановок с повторениями:

    Пример 4. Сколькими способами можно расселить 8 студентов по трем комнатам: одноместной, трехместной и четырехместной? Решение. Различныеспособы расселения студентов по комнатам являются перестановками с повторениями, так как внутри, например, трехместной комнаты выбранные студенты могут занимать спальные места по-разному, но эти варианты не будут являться новыми перестановками, поэтому получаем: То есть всего 280 способов расселения студентов. Вопрос. Вычислить

    Сочетания.

    Пусть некоторое множество содержит n элементов.

    Определение 4. Всякое m- элементное подмножество n- элементного множества называется сочетанием из n элементов по m. - число всех сочетаний.

    (3)

    Пример 5. Для соревнований из 30 спортсменов надо выбрать трех человек. Сколькими способами это можно сделать? Решение. Команда из 3 спортсменов - это подмножество из трех элементов, то есть сочетание из 30 по 3, поэтому количество способов выбора таких команд вычисляется по формуле (3): .

    Свойства сочетаний.

    1. 2. . Из данных свойств следует, что , тогда , далее , , и так далее. Можно расположить эти числа в виде таблицы:

    .....................................................

    .......................

    Эта таблица в виде треугольника называется треугольником Паскаля.

    Определение 5. Выражение a+b называется биномом.

    Формула (4) называется биномиальной формулой Ньютона, а коэффициенты называются биномиальными коэффициентами. Из данной формулы вытекает следующее свойство числа сочетаний

    Вопрос. .

    Сочетания с повторениями

    Пусть имеется множество, содержащее n видов элементов, поэтому есть взять какое-то подмножество этого множества, то в нем могут быть одинаковые элементы. Определение 6. Сочетание с повторениями - это m- элементное подмножество множества, содержащего n видов элементов, в котором элементы повторяются. - число всех сочетаний с повторениями из n по m. Состав m- элементного подмножества имеет вид , где . Заменяя каждое из чисел соответствующим количеством единиц и разделяя единицы нулями, получаем набор, состоящий из m единиц и n-1 нулей. Каждому составу отвечает только одна запись из нулей и единиц, а каждая запись задает только один состав, следовательно, число различных составов равно числу перестановок с повторениями из n-1 нулей и m единиц. Получаем формулу для вычисления всех сочетаний с повторениями.

    (5)

    Пример 6. В кондитерском магазине продаются пирожные четырех видов: наполеоны, эклеры, песочные и бисквитные. Сколькими способами можно купить 7 пирожных? Решение. Любая покупка - это подмножество, в котором могут быть одинаковые элементы, поэтому это сочетание с повторениями. Число всех возможных покупок находим по формуле (5): . Вопрос. В формуле (5) m может быть больше n.

    Размещения

    Определение 7. Упорядоченное m - элементное подмножество n- элементного множества называется размещением. - число всех размещений из n элементов по m. Число всех размещений из n по m больше числа всех сочетаний из n по m, так как из каждого подмножества из m элементов с помощью перестановок можно получить m! упорядоченных подмножеств, получаем формулу для числа размещений

    (6)

    Пример 7. В группе 25 человек. Нужно выбрать актив группы: старосту, заместителя старосты и профорга. Сколькими способами это можно сделать? Решение. Актив группы - это упорядоченное подмножество из трех элементов, так как надо выбрать не только трех человек, но и распределить между ними должности, значит актив группы - это размещение, число всех размещений вычисляем по формуле (6): . Вопрос. Во сколько раз число сочетаний из 20 по 4 меньше числа размещений из 20 по 4?

    Размещения с повторениями

    Пусть дано множество из n элементов, в котором есть одинаковые элементы, тогда его подмножества тоже могут содержать одинаковые элементы. Определение 8. Упорядоченные m- элементные подмножества n- элементного множества, в которых элементы могут повторяться, называются размещениями с повторениями. - число всех размещений из n по m. В подмножестве из m элементов первый элемент можно выбрать n способами(то есть любой элемент множества) , так как элементы могут повторяться, то второй элемент тоже можно выбрать n способами, аналогично остальные элементы подмножества можно выбрать n способами, если воспользоваться правилом умножения, получим формулу для вычисления числа размещений с повторениями:

    Пример 8. В лифт десятиэтажного дома вошли 5 человек. Каждый из них может выйти на любом этаже, начиная со второго. Сколькими способами они могут это сделать? Решение. Так как каждый человек может выйти на любом этаже, начиная со второго, то этажей для выхода 9. Надо выбрать этажи для возможности выхода каждого человека: для первого человека - можно выбрать любой из девяти этажей, аналогично для остальных пассажиров, тогда по формуле (7): способов. Вопрос. Вычислить .

    План:

    1. Элементы комбинаторики.

    2. Общие правила комбинаторики.

    4. Применение графов (схем) при решении комбинаторных задач.

    1. Комбинаторика и ее возникновение.

    Комбинаторика - это область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству.

    Комбинаторика возникла в XVI веке. В жизни привилегированных слоев тогдашнего общества большое место занимали азартные игры (карты, кости). Широко были распространены лотереи. Первоначально комбинаторные задачи касались в основном азартных игр: сколькими способами можно получить данное число очков, бросая 2 или 3 кости или сколькими способами можно получить 2-ух королей в некоторой карточной игре. Эти и другие проблемы азартных игр являлись движущей силой в развитии комбинаторики и далее в развитии теории вероятностей.

    Одним из первых занялся подсчетом числа различных комбинаций при игре в кости итальянский математик Тарталья. Он составил таблицы (числа способов выпадения k очков на r костях). Однако, он не учел, одна и та же сумма очков может выпасть различными способами, поэтому его таблицы содержали большое количество ошибок.

    Теоретическое исследование вопросов комбинаторики предприняли в XVII веке французские математики Блез Паскаль и Ферма. Исходным пунктом их исследований были так же проблемы азартных игр.

    Дальнейшее развитие комбинаторики связано с именами Я. Бернулли, Г. Лейбница, Л. Эйлера. Однако, и в их работах основную роль играли приложения к различным играм.

    Сегодня комбинаторные методы используются для решения транспортных задач, в частности задач по составлению расписаний, для составления планов производства и реализации продукции и т.д.

    2. Общие правила комбинаторики.

    Правило суммы: Если некоторый объект А может быть выбран m способами, а объект В- k способами, то объект «либо А, либо В» можно выбрать m +k способами.

    Примеры:

    1. Допустим, что в ящике находится n разноцветных шаров. Произвольным образом вынимается 1 шарик. Сколькими способами это можно сделать?

    Ответ: n способами.

    Распределим эти n шариков по двум ящикам: в первый- m шариков, во второй- k шариков. Произвольным образом из произвольно выбранного ящика вынимается 1 шарик. Сколькими способами это можно сделать?

    Решение: Из первого ящика шарик можно вынуть m способами, из второго- k способами. Тогда всего способов m+k=n .

    2. Морской семафор.

    В морском семафоре каждой букве алфавита соответствует определенное положение относительно тела сигнальщика двух флажков. Сколько таких сигналов может быть?

    Решение: Общее число складывается из положений, когда оба флажка расположены по разные стороны от тела сигнальщика и положений, когда они расположены по одну сторону от тела сигнальщика. При подсчете числа возможных положений применяется правило суммы.

    Правило произведения: Если объект А можно выбрать m способами, а после каждого такого выбора другой объект В можно выбрать (независимо от выбора объекта А) k способами, то пары объектов «А и В» можно выбрать m *k способами.

    Примеры:

    1. Сколько двузначных чисел существует?

    Решение: Число десятков может быть обозначено любой цифрой от 1 до 9. Число единиц может быть обозначено любой цифрой от 0 до 9. Если число десятков равно 1, то число единиц может быть любым (от 0 до 9). Таким образом, существует 10 двузначных чисел, с числом десятков- 1.Аналогично рассуждаем и для любого другого числа десятков. Тогда можно посчитать, что существует 9 *10 = 90 двузначных чисел.

    2. Имеется 2 ящика. В одном лежит m разноцветных кубиков, а в другом- k разноцветных шариков. Сколькими способами можно выбрать пару «Кубик-шарик»?

    Решение: Выбор шарика не зависит от выбора кубика, и наоборот. Поэтому, число способов, которыми можно выбрать данную пару равно m *k .

    3. Генеральная совокупность без повторений и выборки без повторений.

    Генеральная совокупность без повторений - это набор некоторого конечного числа различных элементов a 1 , a 2 , a 3 , ..., a n .

    Пример: Набор из n разноцветных лоскутков.

    Выборкой объема k (k n ) называется группа из m элементов данной генеральной совокупности.

    Пример: Пестрая лента, сшитая из m разноцветных лоскутков, выбранных из данных n .

    Размещениями из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга либо составом элементов, либо порядком их расположения.

    - число размещений из n по k .

    Число размещений из n по k можно определить следующим способом: первый объект выборки можно выбрать n способами, далее второй объект можно выбрать n -1 способом и т.д.


    Преобразовав данную формулу, имеем:

    Следует помнить, что 0!=1.

    Примеры:

    1. В первой группе класса А первенства по футболу участвует 17 команд. Разыгрываются медали: золото, серебро и бронза. Сколькими способами они могут быть разыграны?

    Решение: Комбинации команд-победителей отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 17 по 3.

    2. Научное общество состоит из 25-ти человек. Необходимо выбрать президента общества, вице-президента, ученого секретаря и казначея. Сколькими способами это можно сделать?

    Решение: Комбинации руководящего состава общества отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 25 по 4.

    Перестановками без повторений из n элементов называются размещения без повторений из n элементов по n , т.е. размещения отличаются друг от друга только порядком следования элементов.

    Число перестановок.

    Примеры:

    1. Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что они должны состоять из различных цифр?

    Решение: Имеем перестановки из 5 элементов. 2. Сколькими способами можно собрать 6 разноцветных лоскутков в пеструю ленту?
    Решение:
    Имеем перестановки из 6 элементов.

    Сочетаниями без повторений из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга только составом элементов.

    - число сочетаний из n по k

    Элементы каждого из сочетаний можно расставить способами. Тогда Примеры:

    1. Если в полуфинале первенства по шахматам участвует 20 человек, а в финал выходят лишь трое, то сколькими способам и можно определить эту тройку?

    Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки, вышедшие в финал, являются сочетаниями из 20 по 3.

    2. Сколькими способами можно выбрать трех делегатов из десяти человек на конференцию?

    Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки делегатов являются сочетаниями из 10 по 3.

    Конспект:




    4.Применение графов (схем) при решении комбинаторных задач.

    В случае, когда число возможных выборов на каждом шагу зависит от того, какие элементы были выбраны ранее, можно изобразить процесс составления комбинаций в виде «дерева». Сначала из одной точки проводят столько отрезков, сколько различных выборов можно сделать на первом шагу. Из конца каждого отрезка проводят столько отрезков, сколько можно сделать выборов на втором шагу, если на первом шагу был выбран данный элемент и т.д.

    Задача:

    При составлении команд космического корабля учитывается вопрос и психологической совместимости участников путешествия. Необходимо составить команду космического корабля из 3 человек: командира, инженера и врача. На место командира есть 4 кандидата: a 1 , a 2 , a 3 , a 4 .На место инженера- 3: b 1 , b 2 , b 3 . На место врача- 3: c 1 , c 2 , c 3 . Проведенная проверка показала, что командир a 1 психологически совместим с инженерами b 1 и b 3 и врачами c 1 и c 3 . Командир a 2 - с инженерами b 1 и b 2 . и всеми врачами. Командир a 3 - с инженерами b 1 и b 2 и врачами c 1 и c 3 . Командир a 4 -со всеми инженерами и врачом c 2 . Кроме того, инженер b 1 не совместим с врачом c 3 , b 2 - с врачом c 1 и b 3 - с врачом c 2 . Сколькими способами при этих условиях может быть составлена команда корабля?

    Решение:

    Составим соответствующее «дерево».






    Ответ: 10 комбинаций.

    Такое дерево является графом и применяется для решения комбинаторных задач.