Формулы корней энной степени. Свойства корней: формулировки, доказательства, примеры

Сценарий урока в 11 классе по теме:

« Корень n-й степени из действительного числа. »

Цель урока: Формирование у учащихся целостного представления о корне n -ой степени и арифметического корень n-ой степени, формирование вычислительных навыков, навыков сознательного и рационального использования свойств корня при решении различных задач, содержащих радикал. Проверить уровень усвоения учащимися вопросов темы.

Предметные: создать содержательные и организационные условия для усвоения материала по теме « Числовые и буквенные выражения» на уровне восприятия осмысления и первичного запоминания; формировать умения применять данные сведения при вычислении корня n-й степени из действительного числа;

Метопредметные: способствовать развитию вычислительных навыков; умение анализировать, сравнивать, обобщать, делать выводы;

Личностные: воспитывать умение высказывать свою точку зрения, слушать ответы других, принимать участие в диалоге, формировать способность к позитивному сотрудничеству.

Планируемый результат.

Предметные: уметь в процессе реальной ситуации применять свойства корня n-й степени из действительного числа при вычислении корней, решении уравнений.

Личностные: формировать внимательность и аккуратность в вычислениях, требовательное отношение к себе и к своей работе, воспитывать чувство взаимопомощи.

Тип урока: урок изучения и первичного закрепления новых знаний

    Мотивация к учебной деятельности:

Восточная мудрость гласит: «Можно коня привести к воде, но нельзя заставить его пить». И человека невозможно заставить учиться хорошо, если он сам не старается узнать больше, не имеет желания работать над своим умственным развитием. Ведь знания только тогда знания, когда они приобретены усилиями своей мысли, а не одной памятью.

Наш урок пройдёт под девизом: «Покорим любую вершину, если будем к ней стремиться». Нам с вами в течение урока нужно успеть преодолеть несколько вершин, и каждый из вас должен вложить все свои усилия, чтобы покорить эти вершины.

«Сегодня у нас урок, на котором мы должны познакомиться с новым понятием: « Корень n-й степени» и научиться применять это понятие к преобразованию различных выражений.

Ваша цель – на основе различных форм работы активизировать имеющиеся знания, внести свой вклад в изучение материала и получить хорошие оценки»
Корень квадратный из действительного числа мы с вами изучали в 8 классе. Корень квадратный связан с функцией вида y =x 2 . Ребята, вы помните, как мы вычисляли корни квадратные, и какие у него были свойства?
а) индивидуальный опрос:

    что это за выражение

    что называется квадратным корнем

    что называется арифметическим квадратным корнем

    перечислите свойства квадратного корня

б) работа в парах: вычислите.

-

2. Актуализация знаний и создание проблемной ситуации: Решите уравнение x 4 =1 . Как мы его можем решить? (Аналитически и графически). Решим его графически. Для этого в одной системе координат построим график функции у = х 4 прямую у = 1 (рис. 164 а). Они пересекаются в двух точках: А (-1;1) и B(1;1). Абсциссы точек А и B, т.е. х 1 = -1,

х 2 = 1, являются корнями уравнения х 4 = 1.
Рассуждая точно так же, находим корни уравнения х 4 =16: А теперь попробуем решить уравнение х 4 =5; геометрическая иллюстрация представлена на рис. 164 б. Ясно, что уравнение имеет два корня x 1 и x 2 , причем эти числа, как и в двух предыдущих случаях, взаимно противоположны. Но для первых двух уравнений корни были найдены без труда (их можно было найти и не пользуясь графиками), а с уравнением х 4 =5 имеются проблемы: по чертежу мы не можем указать значения корней, а можем только установить, что один корень располагается левее точки -1, а второй - правее точки 1.

х 2 = - (читается: «корень четвертой степени из пяти»).

Мы говорили об уравнении х 4 = а, где а 0. С равным успехом мы могли говорить и об уравнении х 4 =а, где а 0, а n - любое натуральное число. Например, решая графически уравнение х 5 = 1, находим х = 1 (рис. 165); решая уравнение х 5 " = 7, устанавливаем, что уравнение имеет один корень х 1 , который располагается на оси х чуть правее точки 1 (см. рис. 165). Для числа х 1 введем обозначение .

Определение 1. Корнем n-й степени из неотрицательного числа а (n = 2, 3,4, 5,...) называют такое неотрицательное число, которое при возведении в степень n дает в результате число а.

Это число обозначают , число а при этом называют подкоренным числом, а число n - показателем корня.
Если n=2, то обычно не говорят «корень второй степени», а говорят "«корень квадратный». В этом случае не пишут Это тот частный случай, который вы специально изучали в курсе алгебры 8-го класса.

Если n = 3, то вместо «корень третьей степени» часто говорят «корень кубический». Первое знакомство с кубическим корнем у вас также состоялось в курсе алгебры 8-го класса. Мы использовали кубический корень в курсе алгебры 9-го класса.

Итак, если а ≥0, n= 2,3,4,5,…, то 1) ≥ 0; 2) () n = а.

Вообще, =b и b n =а - одна и та же зависимость между неотрицательными числами а и b, но только вторая описана более простым языком (использует более простые символы), чем первая.

Операцию нахождения корня из неотрицательного числа называют обычно извлечением корня. Эта операция является обратной по отношению к возведению в соответствующую степень. Сравните:


Еще раз обратите внимание: в таблице фигурируют только положительные числа, поскольку это оговорено в определении 1. И хотя, например, (-6) 6 =36 - верное равенство, перейти от него к записи с использованием квадратного корня, т.е. написать, что нельзя. По определению - положительное число, значит = 6 (а не -6). Точно так же, хотя и 2 4 =16, т (-2) 4 =16, переходя к знакам корней, мы должны написать = 2 (и в то же время ≠-2).

Иногда выражение называют радикалом (от латинского слова гаdix - «корень»). В русском языке термин радикальный используется довольно часто, например, «радикальные изменения» - это значит «коренные изменения». Между прочим, и само обозначение корня напоминает о слове гаdix: символ - это стилизованная буква r.

Операцию извлечения корня определяют и для отрицательного подкоренного числа, но только в случае нечетного показателя корня. Иными словами, равенство (-2) 5 = -32 можно переписать в эквивалентной форме как =-2. При этом используется следующее определение.

Определение 2. Корнем нечетной степени n из отрицательного числа а (n = 3,5,...) называют такое отрицательное число, которое, будучи возведено в степень n, дает в результате число а.

Это число, как и в определении 1, обозначают , число а - подкоренное число, число n - показатель корня.
Итак, если а , n=,5,7,…,то: 1) 0; 2) () n = а.

Таким образом, корень четной степени имеет смысл (т.е. определен) только для неотрицательного подкоренного выражения; корень нечетной степени имеет смысл для любого подкоренного выражения.

5. Первичное закрепление знаний:

1. Вычислить: № № 33.5; 33.6; 33.74 33.8 устно а) ; б) ; в) ; г) .

г) В отличие от предыдущих примеров мы не можем указать точное значение числа Ясно лишь, что оно больше, чем 2, но меньше, чем 3, поскольку 2 4 =16 (это меньше, чем 17), а З 4 = 81 (это больше, чем 17). Замечаем, что 24 намного ближе к 17, чем З4, так что есть основания использовать знак приближенного равенства:
2. Найти значения следующих выражений.

Поставить около примера соответствующую букву.

Небольшая информация о великом учёном. Рене Декарт (1596-1650) французский дворянин, математик, философ, физиолог, мыслитель. Рене Декарт заложил основы аналитической геометрии, ввел буквенные обозначения x 2 , y 3 . Всем известны декартовы координаты, определяющие функцию переменной величины.

3 . Решить уравнения: а) = -2; б) = 1; в) = -4

Решение: а) Если = -2, то y = -8. Фактически обе части заданного уравнения мы должны возвести в куб. Получим: 3х+4= - 8; 3х= -12; х = -4. б) Рассуждая, как в примере а), возведем обе части уравнения в четвертую степень. Получим: х=1.

в) Здесь не надо возводить в четвертую степень, это уравнение не имеет решений. Почему? Потому, что согласно определению 1 корень четной степени - неотрицательное число.
Вашему вниманию предложено несколько заданий. Когда вы выполните эти задания, вы узнаете имя и фамилию великого учёного-математика. Этот учёный в 1637 г первым ввел знак корня.

6. Давайте немного отдохнём.

Поднимает руки класс - это «раз».

Повернулась голова – это «два».

Руки вниз, вперёд смотри – это «три».

Руки в стороны пошире развернули на «четыре»,

С силой их к рукам прижать –это «пять».

Всем ребятам надо сесть –это «шесть».

7. Самостоятельная работа:

    вариант: 2 вариант:

б) 3-. б)12 -6 .

2. Решите уравнение: а) х 4 = -16; б) 0,02х 6 -1,28=0; а) х 8 = -3; б)0,3х 9 – 2,4=0;

в) = -2; в)= 2

8. Повторение: Найдите корень уравнения = - х. Если уравнение имеет более одного корня, в ответ впишите меньший из корней.

9. Рефлексия: Чему вы научились на уроке? Что было интересным? Что было трудным?

Ситбаталова Алма Капаровна

учитель математики

лицей № 15

г. Астана

«Спорьте, заблуждайтесь, ошибайтесь, но, ради Бога, размышляйте, и, хотя криво – да сами».

Г. Лессинг.

Чтобы развить у школьников способность работать с информацией, научить их самостоятельно мыслить, уметь работать в команде, можно использовать различные педагогические технологии. Автор отдает предпочтение групповой форме работы.

11 класс

Тема урока: Корень n-ой степени и его свойства.

Цель урока:

Формирование у учащихся целостного представления о корне n -ой степени, навыков сознательного и рационального использования свойств корня при решении различных задач; понимание принципов упрощения выражений, содержащих радикал . Проверить уровень усвоения учащимися вопросов темы.

Задачи урока:

1. Актуализировать необходимые знания и умения. Дать понятие корня n -ой степени, рассмотреть его свойства.

2. Организовать мыслительную деятельность учащихся для решения проблемы (выстроить необходимую коммуникацию). Способствовать развитию алгоритмического, творческого мышления, развивать навыки самоконтроля. Способствовать развитию интереса к предмету, активности.

3. Воспитывать уважение к чужому мнению и чужому труду через анализ и присвоение нового способа деятельности, умение работать в команде, выражать собственное мнение, давать рекомендации.

Оборудование:

Компьютер, проектор и экран для демонстрации презентации; карточки с заданием для работы в группах; карточки с таблицей для оценки присвоения нового вида деятельности; чистые двойные листы для выполнения учащимися разноуровневой самостоятельной работы; карточки с разноуровневыми заданиями.

Тип урока:

Комбинированный (систематизация и обобщение, усвоение новых знаний, проверка и оценка знаний).

Формы организации учебной деятельности :

Индивидуальная, полилог, диалог, работа с текстом слайда, учебника.

Методы :

Наглядный, словесный, графический, условно-символический, исследовательский.

Мотивация познавательной деятельности учащихся:

Сообщить учащимся, что изучение свойств корня n -ой степени является обобщением уже известных учащимся свойств степени.

План урока:

    Организационно-мотивационный ( приветствие учителя , принятие темы, цели урока , включение в работу ).

    Актуализация знаний (систематизация и обобщение, усвоение новых знаний).

    Применение изученного ( установление правильности и осознанности усвоения нового учебного материала; выявление пробелов и неверных представлений и их коррекция).

    Контроль и самоконтроль (Проверка знаний).

    Рефлексия (Мобилизация учащихся на рефлексию своего поведения (мотивации, способов деятельности, общения).

    Подведение итогов (Дать анализ и оценку успешности достижения цели и наметить перспективу последующей работы).

    Домашнее задание (Обеспечение понимания цели, содержания и способов выполнения домашнего задания).

Ход урока:

    Организационно-мотивационный ( приветствие учителя , принятие темы, цели урока, включение в работу, 1-2 мин ). Приветствие учащихся, сообщение темы «Корень n – й степени и его свойства», сообщение цели и способа деятельности.

    Актуализация знаний (систематизация и обобщение, усвоение новых знаний, 15 мин).

Повторение опорных знаний (систематизация и обобщение):

Класс делится на три группы.

Деятельность учителя: задает вопросы:

    Определение арифметического квадратного корня.

    Свойства арифметического квадратного корня.

    Свойства степени с натуральным показателем.

Записывают свойства на листе ,

,

Отвечают на вопросы ,

Выполняют задания.

Усвоение новых знаний:

Деятельность учителя: Вводятся новые понятия:

    ОПРЕДЕЛЕНИЕ. Корнем n -ной степени из числа a называется такое число, n -ная степень которого равна a .

    ОПРЕДЕЛЕНИЕ. Арифметическим корнем n -ной степени из числа а называют неотрицательное число, n -ная степень которого равна a .

    Основные свойства арифметических корней n -ной степени.

При четном n существует два корня n -ной степени из любого положительного числа a , корень n -ной степени из числа 0 равен рулю, корень четной степени из отрицательных чисел не существует. При нечетном n существует корень n -ной из любого числа a и притом только один.

Для любых чисел выполняются равенства:

1) ; 3) ;

2) 4) ;

5) ; 6) .

    Примеры с заданиями даются на слайде:

Деятельность учащихся в группах:

Самостоятельно записывают свойства на листе ,

Проверяют правильность по слайду ,

Отвечают на вопросы ,

Выполняют задания.

    Применение изученного ( установление правильности и осознанности усвоения нового учебного материала; выявление пробелов и неверных представлений и их коррекция, 15 мин).

Деятельность учителя: Дает комментарий к дальнейшим действиям:

Работа в группах по этапам ,

Перед каждой группой лежит листок с одним и тем же заданием, но с разными условиями (на слайде «Упростить выражение») :

- 1 этап «Генерация идей».

1 этап:

    Поставить цифру 1.

    Записать порядок предполагаемых действий, необходимых для выполнения задания.

    Руководство деятельностью группы (добиться включенности в работу всех учащихся) .

- 2 этап «Анализ идей».

    Знакомство с инструкцией деятельности на слайде:

    Этап:

    Поставить цифру 2.

    Выполнить задание по предложенному алгоритму усовершенствовав его при необходимости.

    Сделать и записать вывод, можно ли выполнить задание по предложенному алгоритму.

    Руководство деятельностью групп .

- 3этап «Экспертиза».

    :

    Этап:

    Поставить цифру 3.

    Проверить правильность выполнения задания, согласно алгоритма.

    Сделать и записать вывод, удалось ли составить необходимый алгоритм, и верно выполнить задание.

- 4этап «Предъявление результатов».

Знакомство с инструкцией деятельности на слайде :

    Этап:

    Оценить деятельность всех групп на каждом этапе.

    Индивидуально выбрать этап, на котором было легче работать, и этап, на котором возникали трудности.

Деятельность учащихся в группах:

на 1 этапе: анализируют задания , выполняют необходимые действия ,

на 2 этапе: анализируют алгоритм, предложенный другой группой , при необходимости вносят коррективы, выполняют задания ,

на 3 этапе: анализируют работу предыдущих групп, делают вывод ,

на 4 этапе: анализируют сделанный вывод , сверяют правильность решения с ответом на слайде , заполняют карточки с таблицей, выбирая роль, в которой более успешны.

Минута здоровья (гимнастика для глаз).

    Контроль и самоконтроль (Проверка знаний, 7 мин).

Деятельность учителя: Дает инструкцию по выполнению самостоятельной работы:

    Все учащиеся выполняют задания 1 уровня (на «3») задания на карточках слайде:

Самостоятельная работа. Оценка «3».

I вариант.

а)

б)

2). Сравнить числа:

II вариант.

1). Найти значение числового выражения:

а)

б)

2). Сравнить числа:

    :

Самостоятельная работа. Оценка «3».

Ответы :

I вариант

1). а) 11

б) 15

2). <

II вариант

1). а) 7

б) 15

2. >

3. Кто справился с заданием 1 уровня?

4. Учащиеся, справившиеся с 1 уровнем, переходят к заданиям 2 уровня (на «4»), те, кто не справился, остаются на 1 уровне задания на слайде, на карточках :

Самостоятельная работа.

Оценка «3».

1). Найти значение числового выражения:

а)

б)

2). Сравнить числа:

Оценка «4».

1). Решить уравнение:

а)

б)

2). Упростить выражение:

    Самопроверка по ответам на слайде :

Самостоятельная работа.

Ответы :

Оценка «3».

1). а) 13

б) 6

2). <

Оценка «4».

1). а)

б)

2). 2а

6. Кто перешел на 3 уровень?

Кто остался на 2 уровне?

Кто перешел на 2 уровень?

Кто остался на 1 уровне?

7. Учащиеся, получившие «4» выполняют задания 3 уровня (на «5»).

Учащиеся, не получившие «4» и справившиеся с 1 уровнем, выполняют задания 2 уровня.

Учащиеся, не получившие «3», выполняют задания 1 уровня задания на карточках на слайде:

Самостоятельная работа.

Оценка «4».

Оценка «5».

Оценку «4»?

Оценку «3»?

10. Кто не справился с заданиями 1 уровня?

Деятельность учащихся в группах:

    Выполняют задания.

    Выполняют самопроверку, ставя оценку «3», если выполнены все задания .

    Предъявляют результаты.

    Выполняют задания.

    Выполняют самопроверку: ставят «3», если выполнены все задания 1 уровня; ставят «4», если выполнены 2 из 3 заданий 2 уровня .

    Предъявляют результаты.

    Выполняют задания.

    Выполняют самопроверку: ставят «3», если выполнены все задания 1 уровня; ставят «4», если выполнены 2 задания 2 уровня; ставят оценку «5», если выполнено хотя бы 1 задание из 2-х .

    Предъявляют результаты.

    Рефлексия (Мобилизация учащихся на рефлексию своего поведения (мотивации, способов деятельности, общения, 3 мин).

Деятельность учителя: Дает комментарии по написанию «Синквейна», инструкция на слайде:

Синквейн.

1 строка – заявляется тема или предмет (одно существительное);

2 строка – описание предмета (два прилагательных или причастия);

3 строка – характеризуются действия предмета (три глагола);

4 строка – выражение отношения автора к предмету (четыре слова);

5 строка – синоним, обобщающий или расширяющий смысл предмета (одно слово).

Деятельность учащихся в группах:

Знакомятся с алгоритмом написания Синквейна,

Пишут Синквейн на листах с самостоятельной работой,

По желанию зачитывают Синквейн,

Сдают листы на проверку.

    Подведение итогов (Дать анализ и оценку успешности достижения цели и наметить перспективу последующей работы, 1-2 мин).

Деятельность учителя: Анализ оценки деятельности на разных этапах урока: Почему вам было легче (сложнее) в той или иной роли? Оценивается работа каждого учащегося.

Деятельность учащихся в группах: отвечают на вопрос.

    Домашнее задание (Обеспечение понимания цели, содержания и способов выполнения домашнего задания, 1-2 мин).

Деятельность учителя: Дает инструкцию по выполнению домашней работы: (А. Абылкасымова, естеств.-мат. напр.)
§ 5, № 83 (2; 4), № 84 (2; 3), № 86, 87 (3; 4), № 89.

‹ ›

Чтобы скачать материал, введите свой E-mail, укажите, кто Вы, и нажмите кнопку

Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств, изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства n -ой степени.

Yandex.RTB R-A-339285-1

Свойства корней

Мы поговорим о свойствах .

  1. Свойство умноженных чисел a и b , которое представляется как равенство a · b = a · b . Его можно представить в виде множителей, положительных или равных нулю a 1 , a 2 , … , a k как a 1 · a 2 · … · a k = a 1 · a 2 · … · a k ;
  2. из частного a: b =   a: b , a ≥ 0 , b > 0 , он также может записываться в таком виде a b = a b ;
  3. Свойство из степени числа a с четным показателем a 2 · m = a m при любом числе a , например, свойство из квадрата числа a 2 = a .

В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a · b = a · b трансформируется как a · b = a · b . Свойства для равенства часто используются для упрощения сложных уравнений.

Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.

Первым делом, необходимо доказать свойства квадратного корня a · b = a · b . Согласно определению, необходимо рассмотреть, что a · b - число, положительное или равное нулю, которое будет равно a · b при возведении в квадрат. Значение выражения a · b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде (a · b) 2 = a 2 · b 2 . По определению квадратного корня a 2 = a и b 2 = b , то a · b = a 2 · b 2 = a · b .

Аналогичным способом можно доказать, что из произведения k множителей a 1 , a 2 , … , a k будет равняться произведению квадратных корней из этих множителей. Действительно, a 1 · a 2 · … · a k 2 = a 1 2 · a 2 2 · … · a k 2 = a 1 · a 2 · … · a k .

Из этого равенства следует, что a 1 · a 2 · … · a k = a 1 · a 2 · … · a k .

Рассмотрим несколько примеров для закрепления темы.

Пример 1

3 · 5 2 5 = 3 · 5 2 5 , 4 , 2 · 13 1 2 = 4 , 2 · 13 1 2 и 2 , 7 · 4 · 12 17 · 0 , 2 (1) = 2 , 7 · 4 · 12 17 · 0 , 2 (1) .

Необходимо доказать свойство арифметического квадратного корня из частного: a: b = a: b , a ≥ 0 , b > 0 . Свойство позволяет записать равенство a: b 2 = a 2: b 2 , а a 2: b 2 = a: b , при этом a: b является положительным числом или равно нулю. Данное выражение и станет доказательством.

Например, 0: 16 = 0: 16 , 80: 5 = 80: 5 и 3 0 , 121 = 3 0 , 121 .

Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенствакак a 2 = a Чтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a ≥ 0 и при a < 0 .

Очевидно, что при a ≥ 0 справедливо равенство a 2 = a . При a < 0 будет верно равенство a 2 = - a . На самом деле, в этом случае − a > 0 и (− a) 2 = a 2 . Можно сделать вывод, a 2 = a , a ≥ 0 - a , a < 0 = a . Именно это и требовалось доказать.

Рассмотрим несколько примеров.

Пример 2

5 2 = 5 = 5 и - 0 , 36 2 = - 0 , 36 = 0 , 36 .

Доказанное свойство поможет дать обоснование a 2 · m = a m , где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a 2 · m выражением (a m) 2 , тогда a 2 · m = (a m) 2 = a m .

Пример 3

3 8 = 3 4 = 3 4 и (- 8 , 3) 14 = - 8 , 3 7 = (8 , 3) 7 .

Свойства корня n-ой степени

Для начала необходимо рассмотреть основные свойства корней n -ой степени:

  1. Свойство из произведения чисел a и b , которые положительны или равны нулю, можно выразить в качестве равенства a · b n = a n · b n , данное свойство справедливо для произведения k чисел a 1 , a 2 , … , a k как a 1 · a 2 · … · a k n = a 1 n · a 2 n · … · a k n ;
  2. из дробного числа обладает свойством a b n = a n b n , где a – любое действительное число, которое положительно или равно нулю, а b – положительное действительное число;
  3. При любом a и четных показателях n = 2 · m справедливо a 2 · m 2 · m = a , а при нечетных n = 2 · m − 1 выполняется равенство a 2 · m - 1 2 · m - 1 = a .
  4. Свойство извлечения из a m n = a n · m , где a – любое число, положительное или равное нулю, n и m – натуральные числа, это свойство также может быть представлено в виде. . . a n k n 2 n 1 = a n 1 · n 2 . . . · n k ;
  5. Для любого неотрицательного a и произвольных n и m , которые являются натуральными, также можно определить справедливое равенство a m n · m = a n ;
  6. Свойство степени n из степени числа a , которое положительно или равно нулю, в натуральной степени m , определяемое равенством a m n = a n m ;
  7. Свойство сравнения, которые обладают одинаковыми показателями: для любых положительных чисел a и b таких, что a < b , выполняется неравенство a n < b n ;
  8. Свойство сравнения, которые обладают одинаковыми числами под корнем: если m и n – натуральные числа, что m > n , тогда при 0 < a < 1 справедливо неравенство a m > a n , а при a > 1 выполняется a m < a n .

Равенства, приведенные выше, являются справедливыми, если части до и после знака равно поменять местами. Они могут быть использованы и в таком виде. Это зачастую применяется во время упрощения или преобразовании выражений.

Доказательство приведенных выше свойств корня основывается на определении, свойствах степени и определении модуля числа. Данные свойства необходимо доказать. Но все по порядку.

  1. Первым делом докажем свойства корня n -ой степени из произведения a · b n = a n · b n . Для a и b , которые являются положительными или равными нулю, значение a n · b n также положительно или равно нулю, так как является следствием умножения неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство a n · b n n = a n n · b n n . По определению корня n -ой степени a n n = a и b n n = b , следовательно, a n · b n n = a · b . Полученное равенство – именно то, что и требовалось доказать.

Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a 1 , a 2 , … , a n выполняется a 1 n · a 2 n · … · a k n ≥ 0 .

Приведем примеры использования свойства корня n -ой степени из произведения: 5 · 2 1 2 7 = 5 7 · 2 1 2 7 и 8 , 3 4 · 17 , (21) 4 · 3 4 · 5 7 4 = 8 , 3 · 17 , (21) · 3 · 5 7 4 .

  1. Докажем свойство корня из частного a b n = a n b n . При a ≥ 0 и b > 0 выполняется условие a n b n ≥ 0 , а a n b n n = a n n b n n = a b .

Покажем примеры:

Пример 4

8 27 3 = 8 3 27 3 и 2 , 3 10: 2 3 10 = 2 , 3: 2 3 10 .

  1. Для следующего шага необходимо доказать свойства n -ой степени из числа в степени n . Представим это в виде равенства a 2 · m 2 · m = a и a 2 · m - 1 2 · m - 1 = a для любого действительного a и натурального m . При a ≥ 0 получаем a = a и a 2 · m = a 2 · m , что доказывает равенство a 2 · m 2 · m = a , а равенство a 2 · m - 1 2 · m - 1 = a очевидно. При a < 0 получаем соответственно a = - a и a 2 · m = (- a) 2 · m = a 2 · m . Последняя трансформация числа справедлива согласно свойству степени. Именно это доказывает равенство a 2 · m 2 · m = a , а a 2 · m - 1 2 · m - 1 = a будет справедливо, так как за нечетной степени рассматривается - c 2 · m - 1 = - c 2 · m - 1 для любого числа c , положительного или равного нулю.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько примеров с использованием свойства:

Пример 5

7 4 4 = 7 = 7 , (- 5) 12 12 = - 5 = 5 , 0 8 8 = 0 = 0 , 6 3 3 = 6 и (- 3 , 39) 5 5 = - 3 , 39 .

  1. Докажем следующее равенство a m n = a n · m . Для этого необходимо поменять числа до знака равно и после него местами a n · m = a m n . Это будет означать верная запись. Для a , которое является положительным или равно нулю, из вида a m n является числом положительным или равным нулю. Обратимся к свойству возведения степени в степень и определению. С их помощью можно преобразовать равенства в виде a m n n · m = a m n n m = a m m = a . Этим доказано рассматриваемое свойство корня из корня.

Аналогично доказываются и другие свойства. Действительно, . . . a n k n 2 n 1 n 1 · n 2 · . . . · n k = . . . a n k n 3 n 2 n 2 · n 3 · . . . · n k = . . . a n k n 4 n 3 n 3 · n 4 · . . . · n k = . . . = a n k n k = a .

Например, 7 3 5 = 7 5 · 3 и 0 , 0009 6 = 0 , 0009 2 · 2 · 6 = 0 , 0009 24 .

  1. Докажем следующее свойство a m n · m = a n . Для этого необходимо показать, что a n – число, положительное или равное нулю. При возведении в степень n · m равно a m . Если число a является положительным или равным нулю, то n -ой степени из числа a является числом положительным или равным нулю При этом a n · m n = a n n m , что и требовалось доказать.

Для того, чтобы закрепить полученные знания, рассмотрим несколько примеров

  1. Докажем следующее свойство – свойство корня из степени вида a m n = a n m . Очевидно, что при a ≥ 0 степень a n m является неотрицательным числом. Более того, ее n -ая степень равна a m , действительно, a n m n = a n m · n = a n n m = a m . Этим и доказано рассматриваемое свойство степени.

Например, 2 3 5 3 = 2 3 3 5 .

  1. Необходимо доказательство, что для любых положительных чисел a и b выполнено условие a < b . Рассмотрим неравенство a n < b n . Воспользуемся методом от противного a n ≥ b n . Тогда, согласно свойству, о котором говорилось выше, неравенство считается верным a n n ≥ b n n , то есть, a ≥ b . Но это не соответствует условию a < b . Следовательно, a n < b n при a < b .

Для примера приведем 12 4 < 15 2 3 4 .

  1. Рассмотрим свойство корня n -ой степени. Необходимо для начала рассмотреть первую часть неравенства. При m > n и 0 < a < 1 справедливо a m > a n . Предположим, что a m ≤ a n . Свойства позволят упростить выражение до a n m · n ≤ a m m · n . Тогда, согласно свойствам степени с натуральным показателем, выполняется неравенство a n m · n m · n ≤ a m m · n m · n , то есть, a n ≤ a m . Полученное значение при m > n и 0 < a < 1 не соответствует свойствам, приведенным выше.

Таким же способом можно доказать, что при m > n и a > 1 справедливо условие a m < a n .

Для того, чтобы закрепить приведенные свойства, рассмотрим несколько конкретных примеров. Рассмотрим неравенства, используя конкретные числа.

Пример 6

0 , 7 3 < 0 , 7 5 и 12 > 12 7 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Определение
Степенная функция с показателем степени p - это функция f(x) = x p , значение которой в точке x равно значению показательной функции с основанием x в точке p .
Кроме этого, f(0) = 0 p = 0 при p > 0 .

Для натуральных значений показателя , степенная функция есть произведение n чисел, равных x :
.
Она определена для всех действительных .

Для положительных рациональных значений показателя , степенная функция есть произведение n корней степени m из числа x :
.
Для нечетных m , она определена для всех действительных x . Для четных m , степенная функция определена для неотрицательных .

Для отрицательных , степенная функция определяется по формуле:
.
Поэтому она не определена в точке .

Для иррациональных значений показателя p , степенная функция определяется по формуле:
,
где a - произвольное положительное число, не равное единице: .
При , она определена для .
При , степенная функция определена для .

Непрерывность . Степенная функция непрерывна на своей области определения.

Свойства и формулы степенной функции при x ≥ 0

Здесь мы рассмотрим свойства степенной функции при неотрицательных значениях аргумента x . Как указано выше, при некоторых значениях показателя p , степенная функция определена и для отрицательных значений x . В этом случае, ее свойства можно получить из свойств при , используя четность или нечетность. Эти случаи подробно рассмотрены и проиллюстрированы на странице « ».

Степенная функция, y = x p , с показателем p имеет следующие свойства:
(1.1) определена и непрерывна на множестве
при ,
при ;
(1.2) имеет множество значений
при ,
при ;
(1.3) строго возрастает при ,
строго убывает при ;
(1.4) при ;
при ;
(1.5) ;
(1.5*) ;
(1.6) ;
(1.7) ;
(1.7*) ;
(1.8) ;
(1.9) .

Доказательство свойств приводится на странице «Степенная функция (доказательство непрерывности и свойств) »

Корни - определение, формулы, свойства

Определение
Корень из числа x степени n - это число , возведение которого в степень n дает x :
.
Здесь n = 2, 3, 4, ... - натуральное число, большее единицы.

Также можно сказать, что корень из числа x степени n - это корень (то есть решение) уравнения
.
Заметим, что функция является обратной к функции .

Квадратный корень из числа x - это корень степени 2: .

Кубический корень из числа x - это корень степени 3: .

Четная степень

Для четных степеней n = 2 m , корень определен при x ≥ 0 . Часто используется формула, справедливая как для положительных, так и для отрицательных x :
.
Для квадратного корня:
.

Здесь важен порядок, в котором выполняются операции - то есть сначала производится возведение в квадрат, в результате чего получается неотрицательное число, а затем из него извлекается корень (из неотрицательного числа можно извлекать квадратный корень). Если бы мы изменили порядок: , то при отрицательных x корень был бы не определен, а вместе с ним не определено и все выражение.

Нечетная степень

Для нечетных степеней , корень определен для всех x :
;
.

Свойства и формулы корней

Корень из x является степенной функцией:
.
При x ≥ 0 имеют место следующие формулы:
;
;
, ;
.

Эти формулы также могут быть применимы и при отрицательных значениях переменных . Нужно только следить за тем, чтобы подкоренное выражение четных степеней не было отрицательным.

Частные значения

Корень 0 равен 0: .
Корень 1 равен 1: .
Квадратный корень 0 равен 0: .
Квадратный корень 1 равен 1: .

Пример. Корень из корней

Рассмотрим пример квадратного корня из корней:
.
Преобразуем внутренний квадратный корень, применяя приведенные выше формулы:
.
Теперь преобразуем исходный корень:
.
Итак,
.

y = x p при различных значениях показателя p .

Здесь приводятся графики функции при неотрицательных значениях аргумента x . Графики степенной функции, определенной при отрицательных значениях x , приводятся на странице «Степенная функция, ее свойства и графики »

Обратная функция

Обратной для степенной функции с показателем p является степенная функция с показателем 1/p .

Если , то .

Производная степенной функции

Производная n-го порядка:
;

Вывод формул > > >

Интеграл от степенной функции

P ≠ - 1 ;
.

Разложение в степенной ряд

При - 1 < x < 1 имеет место следующее разложение:

Выражения через комплексные числа

Рассмотрим функцию комплексного переменного z :
f(z) = z t .
Выразим комплексную переменную z через модуль r и аргумент φ (r = |z| ):
z = r e i φ .
Комплексное число t представим в виде действительной и мнимой частей:
t = p + i q .
Имеем:

Далее учтем, что аргумент φ определен не однозначно:
,

Рассмотрим случай, когда q = 0 , то есть показатель степени - действительное число, t = p . Тогда
.

Если p - целое, то и kp - целое. Тогда, в силу периодичности тригонометрических функций:
.
То есть показательная функция при целом показателе степени, для заданного z , имеет только одно значение и поэтому является однозначной.

Если p - иррациональное, то произведения kp ни при каком k не дают целого числа. Поскольку k пробегает бесконечный ряд значений k = 0, ±1, ±2, ±3, ... , то функция z p имеет бесконечно много значений. Всякий раз, когда аргумент z получает приращение 2 π (один оборот), мы переходим на новую ветвь функции.

Если p - рациональное, то его можно представить в виде:
, где m, n - целые, не содержащие общих делителей. Тогда
.
Первые n величин, при k = k 0 = 0, 1, 2, ... n-1 , дают n различных значений kp :
.
Однако последующие величины дают значения, отличающиеся от предыдущих на целое число. Например, при k = k 0 + n имеем:
.
Тригонометрические функции, аргументы которых различаются на величины, кратные 2 π , имеют равные значения. Поэтому при дальнейшем увеличении k мы получаем те же значения z p , что и для k = k 0 = 0, 1, 2, ... n-1 .

Таким образом, показательная функция с рациональным показателем степени является многозначной и имеет n значений (ветвей). Всякий раз, когда аргумент z получает приращение 2 π (один оборот), мы переходим на новую ветвь функции. Через n таких оборотов мы возвращаемся на первую ветвь, с которой начинался отсчет.

В частности, корень степени n имеет n значений. В качестве примера рассмотрим корень n - й степени действительного положительного числа z = x . В этом случае φ 0 = 0 , z = r = |z| = x , .
.
Так, для квадратного корня, n = 2 ,
.
Для четных k, (- 1 ) k = 1 . Для нечетных k, (- 1 ) k = - 1 .
То есть квадратный корень имеет два значения: + и - .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Примеры:

\(\sqrt{16}=2\), так как \(2^4=16\)
\(\sqrt{-\frac{1}{125}}\) \(=\) \(-\frac{1}{5}\) ,так как \((-\frac{1}{5})^3\) \(=\) \(-\frac{1}{125}\)

Как вычислить корень n-ой степени?

Чтобы вычислить корень \(n\)-ой степени, надо задать себе вопрос: какое число в \(n\)-ой степени, даст под корнем?

Например . Вычислите корень \(n\)-ой степени: а)\(\sqrt{16}\); б) \(\sqrt{-64}\); в) \(\sqrt{0,00001}\); г)\(\sqrt{8000}\); д) \(\sqrt{\frac{1}{81}}\).

а) Какое число в \(4\)-ой степени, даст \(16\)? Очевидно, \(2\). Поэтому:

б) Какое число в \(3\)-ей степени, даст \(-64\)?

\(\sqrt{-64}=-4\)

в) Какое число в \(5\)-ой степени, даст \(0,00001\)?

\(\sqrt{0,00001}=0,1\)

г) Какое число в \(3\)-ей степени, даст \(8000\)?

\(\sqrt{8000}=20\)

д) Какое число в \(4\)-ой степени, даст \(\frac{1}{81}\)?

\(\sqrt{\frac{1}{81}}=\frac{1}{3}\)

Мы рассмотрели самые простые примеры с корнем \(n\)-ой степени. Для решения более сложных задач с корнями \(n\)-ой степени – жизненно необходимо знать их .

Пример. Вычислите:

\(\sqrt 3\cdot \sqrt{-3} \cdot \sqrt{27} \cdot \sqrt{9} -\) \(=\)

В данный момент ни один из корней нельзя вычислить. Поэтому применим свойства корня \(n\)-ой степени и преобразуем выражение.
\(\frac{\sqrt{-64}}{\sqrt{2}}\) \(=\)\(\sqrt{\frac{-64}{2}}\) \(=\)\(\sqrt{-32}\) т.к. \(\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\) \(=\)\(\sqrt[n]{\frac{a}{b}}\)

\(=\sqrt{3}\cdot \sqrt{-3}\cdot \sqrt{27}\cdot \sqrt{9}-\sqrt{-32}=\)

Переставим множители в первом слагаемом так, что бы квадратный корень и корень \(n\)-ой степени стояли рядом. Так легче будет применять свойства т.к. большинство свойств корней \(n\)-ой степени работают только с корнями одинаковой степени.
И вычислим корень 5-ой степени.

\(=\sqrt{3} \cdot \sqrt{27} \cdot \sqrt{-3}\cdot \sqrt{9}-(-5)=\)

Применим свойство \(\sqrt[n]{a}\cdot \sqrt[n]{b}=\sqrt[n]{a\cdot b}\) и раскроем скобку

\(=\sqrt{81}\cdot \sqrt{-27}+5=\)

Вычисли \(\sqrt{81}\) и \(\sqrt{-27}\)

\(=9\cdot(-3)+5 =-27+5=-22\)


Корень n-ой степени и квадратный корень связаны?

В любом случае, любой корень любой степени - это просто число, пусть и записанное в непривычном вам виде.

Особенность корня n-ой степени

Корень \(n\)-ой степени с нечетными \(n\) может извлекаться из любого числа, даже отрицательного (см. примеры в начале). Но если \(n\) - четное (\(\sqrt{a}\), \(\sqrt{a}\),\(\sqrt{a}\)…), то такой корень извлекается только если \(a ≥ 0\) (кстати, у квадратного корня так же). Это связано с тем, что извлечение корня – действие, обратное возведению в степень.


А возведение в четную степень делает даже отрицательное число положительным. Действительно, \((-2)^6=(-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2)=64\). Поэтому мы не можем получить под корнем четной степени отрицательного числа. А значит, и извлечь такой корень из отрицательного числа – не можем.


Нечетная же степень таких ограничений не имеет – отрицательное число, возведенное в нечетную степень останется отрицательным: \((-2)^5=(-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2)=-32\). Поэтому под корнем нечетной степени можно получить отрицательное число. А значит и извлечь его из отрицательного числа – тоже можно.