Презентация на тему "невесомость физика". Что такое невесомость Невесомость вокруг нас сообщение

Слайд 2

ЦЕЛЬ: Дать понятие невесомости в комплексном виде ЗАДАЧИ: Разобраться в механизме возникновения этого явления; Описать этот механизм математически и физически; Рассказать некоторые интересные факты про невесомость; Понять, как состояние невесомости влияет на здоровье людей, находящихся в космическом корабле, на станции и т.д., то есть посмотреть на невесомость с биологической и медицинской точек зрения.

Слайд 3

Вес тела – сила, с которой тело вследствие его притяжения к земле действует на опору или подвес. По III закону Ньютона: Р = -Fу (1) (рис.1); 2) Также, по III закону Ньютона Fт = -Fу (2); 3) Сопоставив выражения 1 и 2, получим: Р = FТ; 4) По II закону Ньютона при движении тела массой m под действием силы тяжести Fт и силы упругости FУ с ускорением а выполняется равенство: FТ + FУ = ma 5) Из уравнений Р = -FУ и Fт + Fу = mа получаем: Р = Fт – ma = mg – ma, или Р = m(g – a). 6) OY (рис.2): Ру = m(gУ – aУ) или P = m(g – a).

Слайд 4

Четыре случая веса тела в ускоренно движущимся лифте

Говоря о весе тела в ускоренно движущимся лифте,обычно рассматриваются три случая: Лифт движется с ускорением, направленным вверх (P>mg, P=mg+a) Лифт движется с ускорением, направленным вниз (P

Слайд 5

А как должен двигаться лифт, чтобы человек мог ходить по потолку? Лифт должен двигаться с ускорением большим g. Когда ускорение а станет равным g, вес станет равным нулю. Если и дальше увеличивать ускорение, то можно предположить, что вес тела изменит направление.

Слайд 6

НЕВЕСОМОСТЬ Если тело вместе с опорой свободно падает, то a = g, и из формулы P = m(g – a) следует, что P = 0. Исчезновение веса при движении опоры с ускорением сводного падения называется невесомостью. Невесомость бывает двух видов: Статическая невесомость – потеря веса, которая возникает на большом расстоянии от небесных тел из – за ослабления притяжения. 2) Динамическая невесомость – состояние, в котором находится человек во время полета по орбите.

Слайд 7

Возникновение динамической невесомости

Слайд 8

Тело под действием внешних сил будет в состоянии невесомости, если: 1) Действующие на тело силы являются только массовыми (силы тяготения); Поле этих массовых сил локально однородно; Начальные скорости всех частиц тела по модулю и направлению одинаковы.

Слайд 9

Пламя в невесомости В невесомости пламя свечи принимает сферическую форму и имеет голубой цвет Пламя свечи на Земле Пламя в невесомости

Слайд 10

Кипение жидкости в невесомости В невесомости кипение становится гораздо более медленным процессом. Однако вибрация жидкости может привести к ее резкому вскипанию. Этот результат имеет значение для космической индустрии. Кипение воды на Земле Кипение воды в условиях невесомости

Слайд 11

ЧЕЛОВЕК И НЕВЕСОМОСТЬ Пути решения проблем, связанных с невесомостью: Мышечная тренировка, электростимуляция мышц, отрицательное давление, приложенное к нижней половине тела, фармакологические и др. средства; Создание на борту космического аппарата искусственной тяжести; Ограничение мышечной активности, лишение человека привычной опоры по вертикальной оси тела, снижение гидростатического давления крови и т.д.

Слайд 12

Исследование проблем жизнедеятельности в космосе Американская орбитальная станция "Скайлэб" (от английского Skylab, то есть, sky laboratory - "небесная лаборатория")

Слайд 13

Операция в невесомости Французские медики во главе с профессором Домиником Мартеном из Бордо провели первую в мире хирургическую операцию в условиях невесомости. Эксперимент проводился на борту авиалайнера А-300 в специально оборудованном модуле. В его проведении участвовало трое хирургов и двое анестезиологов, которым предстояло в условиях невесомости удалить жировую опухоль на руке у пациента – добровольца – 46 – летнего Филлипа Саншо.

Слайд 14

Итоги Невесомость возникает тогда, когда тело свободно падает вместе с опорой, т.е. ускорение тела и опоры равно ускорению свободного падения; Невесомость бывает двух видов: статическая и динамическая; Невесомость может быть использована для осуществления некоторых технологических процессов, которые трудно или невозможно реализовать в земных условиях; Изучение пламени в условиях невесомости необходимо для оценки пожароустойчивости космического корабля и при разработке специальных средств пожаротушения;

Слайд 15

Итоги Детальное понимание процесса кипения жидкости в космосе крайне важно для успешного функционирования космических аппаратов, несущих на борту тонны жидкого топлива; Влияние невесомости на организм является отрицательным, так как вызывает изменение ряда его жизненных функций. Это можно исправить путем создания на космическом корабле искусственной тяжести, ограничения мышечной активности космонавтов и т.д.; Человек может быть прооперирован в космическом пространстве, в условиях невесомости. Это доказали Французские медики во главе с профессором Домиником Мартеном из Бордо.

Слайд 16

Слайд 17

СПАСИБО ЗА ВНИМАНИЕ!

Посмотреть все слайды

1. У астронавтов рано или поздно начинается космическая болезнь, которая сопровождается головными болями и проблемами в суставах при движении. Но это только часть проблем. Когда астронавт оказывается в невесомости, вся жидкость, которая находится в организме, поднимается вверх и вызывает закупорку носоглотки и отеки на лице. Мышцы начинают атрофироваться за ненадобностью, в костях все меньше кальция, а кишечник работает в 2 раза медленнее.

2. Еще один бонус от невесомости – это увеличение роста из-за низкого давления. Оно воздействует на позвоночник и человек вырастает как минимум на 5 см.


3. Ученые провели опыты на крысах: что будет, если крыса вынашивает плод в космосе. Беременных крыс отправляли именно тогда, когда у плода начинало развиваться внутреннее ухо. Все потомство имело проблемы с вестибулярным аппаратом.


4. Астронавты, которые храпели, в космосе совершенно от этого избавлялись.


5. В космосе о полноценном сне и речи быть не может. Восходы случаются 16 раз, из-за чего конечно же происходят изменения и в восприятии ритма жизни.


6. Исследователи долгое время не могли решить вопрос с туалетом. Так как в условиях невесомости с этим возникают большие проблемы. Сначала придумали использовать что-то вроде презервативов в скафандрах, но этой идеи отказались. И теперь астронавты надевают подгузники только при выходе в открытый космос. На космическом же корабле туалет выглядит почти также как и обычный, но смыв происходит сильными потоками воздуха, а не воды.


7. Те, кто возвращается из космоса, рассказывают, что очень трудно двигать руками и ногами сразу же после прилета. Поэтому приземление многие называют вторым рождением. А еще возникают проблемы с адаптацией к восприятию притяжения. Если предмет падает, то он все-таки падает и для астронавтов это несколько непривычно.


При поддержке: При покупке квартиры или дома всегда возникает много хлопот. Одна из самых важных проблем – это переезд квартиры , но этот вопрос всегда можно быстро решить, если заказать качественные услуги переезда.

На прошлых уроках мы с вами разобрали, что такое сила всемирного тяготения и ее частный случай - сила тяжести, которая действует на тела, находящиеся на Земле.

Сила тяжести - сила, действующая на любое материальное тело, находящееся вблизи поверхности Земли или другого астрономического тела. Сила тяжести играет важнейшую роль в нашей жизни, поскольку ее воздействию подвержено все, что нас окружает. Сегодня мы разберем еще одну силу, которая чаще всего связана с силой тяжести. Это сила - вес тела. Тема сегодняшнего урока: «Вес тела. Невесомость»

Под действием силы упругости, которая приложена к верхнему краю тела, это тело, в свою очередь, также деформируется, возникает другая сила упругости, обусловленная деформацией тела. Эта сила приложена к нижнему краю пружины. Кроме того, она равна по модулю силе упругости пружины и направлена вниз. Именно эту силу упругости тела мы и будем называть его весом, то есть вес тела приложен к пружине и направлен вниз.

После того как колебания тела на пружине затухнут, система придет в состояние равновесия, в котором сумма сил, действующих на тело, будет равна нулю. Это значит, что сила тяжести равна по модулю и противоположна по направлению силе упругости пружины (Рис. 2). Последняя равна по модулю и противоположна по направлению весу тела, как мы уже выяснили. Значит, сила тяжести по модулю равна весу тела. Данное соотношение не универсально, но в нашем примере - справедливо.

Рис. 2. Вес и сила тяжести ()

Приведенная формула не означает, что сила тяжести и вес - одно и то же. Эти две силы разные по своей природе. Вес - это сила упругости, приложенная к подвесу со стороны тела, а сила тяжести - это сила, приложенная к телу со стороны Земли.

Рис. 3. Вес и сила тяжести тела на подвесе и на опоре ()

Выясним некоторые особенности веса. Вес - это сила, с которой тело давит на опору или растягивает подвес, из этого следует, что если тело не подвешено или не закреплено на опоре, то его вес равен нулю. Данный вывод кажется противоречивым нашему повседневному опыту. Однако он имеет вполне справедливые физические примеры.

Если пружину с подвешенным к ней телом отпустить и позволить ей свободно падать, то указатель динамометра будет показывать нулевое значение (Рис. 4). Причина этого проста: груз и динамометр движутся с одинаковым ускорением (g) и одинаковой нулевой начальной скоростью (V 0). Нижний конец пружины движется синхронно с грузом, при этом пружина не деформируется и силы упругости в пружине не возникает. Следовательно, не возникает и встречной силы упругости, которая является весом тела, то есть тело не обладает весом, или является невесомым.

Рис. 4. Свободное падение пружины с подвешенным к ней телом ()

Состояние невесомости возникает благодаря тому, что в земных условиях сила тяжести сообщает всем телам одинаковое ускорение, так называемое ускорение свободного падения. Для нашего примера мы можем сказать, что груз и динамометр движутся с одинаковым ускорением. Если на тело действует только сила тяжести или только сила всемирного тяготения, то это тело находится в состоянии невесомости. Важно понимать, что в этом случае исчезает только вес тела, но не сила тяжести, действующая на это тело.

Состояние невесомости - не экзотика, довольно часто многие из вас его испытывали - любой человек, подпрыгивающий или спрыгивающий с какой либо высоты, до момента приземления находится в состоянии невесомости.

Рассмотрим случай, когда динамометр и прикрепленное к его пружине тело движутся вниз с некоторым ускорением, но не совершают при этом свободного падения. Показания динамометра уменьшатся по сравнению с показаниями при неподвижном грузе и пружине, значит, вес тела стал меньше, чем он был в состоянии покоя. В чем причина такого уменьшения? Дадим математическое объяснение, опираясь на второй закон Ньютона.

Рис. 5. Математическое объяснение веса тела ()

На тело действуют две силы: сила тяжести, направленная вниз, и сила упругости пружины, направленная вверх. Эти две силы сообщают телу ускорение. и уравнение движения будет иметь вид:

Выберем ось y (Рис. 5), поскольку все силы направлены вертикально, нам достаточно одной оси. В результате проецирования и переноса слагаемых получим - модуль силы упругости будет равен:

ma = mg - F упр

F упр = mg - ma,

где в левой и правой части уравнения стоят проекции сил, указанных во втором законе Ньютона, на ось y. Согласно определению, вес тела по модулю равен силе упругости пружины, и, подставив ее значение, получим:

P = F упр = mg - ma = m(g - а)

Вес тела равен произведению массы тела на разность ускорений. Из полученной формулы видно, что если модуль ускорения тела меньше модуля ускорения свободного падения, то вес тела меньше силы тяжести, то есть вес тела, движущегося ускоренно, меньше веса покоящегося тела.

Рассмотрим случай, когда тело с грузиком движется ускоренно вверх (Рис. 6).

Стрелка динамометра покажет значение веса тела большее, чем покоящегося груза.

Рис. 6. Тело с грузиком движется ускоренно вверх ()

Тело движется вверх, и его ускорение направлено туда же, следовательно, нам необходимо поменять знак проекции ускорения на ось у.

Из формулы видно, что теперь вес тела больше силы тяжести, то есть больше веса покоящегося тела.

Увеличение веса тела, вызванное его ускоренным движением, называется перегрузкой .

Это справедливо не только для тела, подвешенного на пружине, но и для тела, укрепленного на опоре.

Рассмотрим пример, в котором проявляется изменение тела при его ускоренном движении (Рис. 7).

Автомобиль движется по мосту выпуклой траектории, то есть по криволинейной траектории. Будем считать форму моста дугой окружности. Из кинематики мы знаем, что автомобиль движется с центростремительным ускорением, величина которого равна квадрату скорости, деленной на радиус кривизны моста. В момент нахождения его в наивысшей точке, это ускорение будет направлено вертикально вниз. Согласно второму закону Ньютона это ускорение сообщается автомобилю равнодействующей силой тяжести и силой реакции опоры.

Выберем координатную ось у, направленную вертикально вверх, и запишем это уравнение в проекции на выбранную ось, подставим значения и проведем преобразования:

Рис. 7. Наивысшая точка нахождения автомобиля ()

Вес автомобиля, по третьему закону Ньютона, равен по модулю силе реакции опоры (), при этом мы видим, что вес автомобиля по модулю меньше силы тяжести, то есть меньше веса неподвижного автомобиля.

Ракета при старте с Земли движется вертикально вверх с ускорением а=20 м/с 2 . Каков вес летчика-космонавта, находящегося в кабине ракеты, если его масса m=80 кг?

Совершенно очевидно, что ускорение ракеты направлено вверх и для решения мы должны использовать формулу веса тела для случая с перегрузом (Рис. 8).

Рис. 8. Иллюстрация к задаче

Необходимо отметить, что если неподвижное относительно Земли тело имеет вес 2400 Н, то его масса составляет 240 кг, то есть космонавт ощущает себя в три раза массивнее, чем есть на самом деле.

Мы разобрали понятие веса тела, выяснили основные свойства этой величины и получили формулы, которые позволяют нам рассчитать вес тела, движущегося с ускорением.

Если тело движется вертикально вниз, при этом модуль его ускорения меньше ускорения свободного падения, то вес тела уменьшается по сравнению со значением веса неподвижного тела.

Если тело движется ускоренно вертикально вверх, то его вес возрастает и при этом тело испытывает перегруз.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.

Домашнее задание

  1. Дать определение весу тела.
  2. В чем различие между весом тела и силой тяжести?
  3. Когда возникает состояние невесомости?
  1. Интернет-портал Physics.kgsu.ru ().
  2. Интернет-портал Festival.1september.ru ().
  3. Интернет-портал Terver.ru ().

Более подробно о том, что это такое и где его можно ощутить, и пойдёт речь в этой статье.

Статическая

Существуют два типа невесомости. Это статическая — наблюдается при удалении от объекта с большой массой. Например, тело, улетевшее на значительное расстояние от планеты. Следует при этом понимать, что его вес полностью не исчезает.

Дело в том, что гравитация от массивных объектов, таких как планеты и звезды, хоть и уменьшается с расстоянием, но полностью не исчезает. Действие её распространяется бесконечно далеко во все уголки Вселенной, обратно пропорционально квадрату расстояния. Это следует из определения невесомости.

Таким образом, выйти из зоны действия гравитационного поля невозможно.

Динамическая

Другой тип невесомости — это динамическая. Ее постоянно испытывают космонавты и лётчики. Нивелировать действие гравитационного поля массивного объекта можно путем свободного падения на него. Для этого необходимо, чтобы объект набрал определённую скорость и стал спутником.

Набрав необходимую скорость, спутник начинает переходить в состояние постоянного свободного падения. Предметы внутри него будут находиться в состоянии невесомости. Такая скорость называется первой космической.

Для планеты Земля, например, скорость составляет порядка 8 километров в секунду. Для Солнца — уже 640. Все зависит от массы объекта и его плотности. В таких где плотность достигает сотни миллионов тонн на кубический сантиметр — космическая скорость приближается к скорости света.

Невесомость на Земле

Оказывается, испытать состояние невесомости можно, не покидая пределы планеты. Правда, на очень короткий период. Например, пассажир автомобиля, едущего по выгнутому мосту, испытает невесомость на некоторое время в верхней части выпуклости моста.

Пассажиры, едущие в общественном транспорте по ухабистой дороге, постоянно испытывают действие невесомости каждый раз, как автобус наезжает на яму или кочку. На короткий промежуток времени они находятся в состоянии свободного падения.

Развлечение

В последнее время в сфере индустрии развлечений появились специальные полигоны, где все желающие могут испытать невесомость.

Пройдя медицинскую комиссию и заплатив определённую сумму денег, можно попасть на борт самолёта, который летит по волнообразной траектории, и во время пике люди на протяжении полминуты могут испытать необычное чувство невесомости.

Пилот самолёта через селекторную связь сообщает о начале действия невесомости. Это необходимо в целях безопасности. Дело в том, что после свободного падения самолёт стремительно набирает высоту. При этом люди, находящиеся на борту, испытывают диаметрально противоположный эффект — перегрузку.

Порой эта величина достигает трёхкратного значения ускорения свободного падения. Иными словами, вес тела в невесомости будет в три раза больше естественного. При падении с высоты нескольких метров с такой массой тела можно очень легко получить травму.

Для этих целей на борту самолёта в отделении для невесомости сидят специально обученные инструкторы. В их задачу входит вовремя опускать на пол самолёта тех людей, которые не успели уложиться в данный временной интервал.

Серия взлётов и падений происходит с периодичностью до двадцати раз за один полет самолёта.

В России, например, для желающих ощутить невесомость есть специальная центрифуга, которая находится в центре подготовки космонавтов и пилотов. Опять же, после медкомиссии и денежного взноса в размере порядка 55 тыс. рублей человек может ощутить на себе действие невесомости.

Влияние на организм человека

По определению, невесомость абсолютно безвредна для организма человека. Сложности начинаются, когда она длится несколько суток, недель или месяцев.

В большинстве случаев это касается только обитателей космических станций. Космонавты, долгое время находящиеся на борту аппаратов, начинают испытывать существенный дискомфорт. В первую очередь это связано с вестибулярным механизмом.

На Земле, в привычных условиях, отолиты вестибулярного аппарата давят на нервные окончания, таким образом подсказывая нашему мозгу, где верх и низ, ориентируя тело человека в пространстве.

Вес и невесомость

Совсем другое дело, когда тело ничего не весит. Все процессы в нем протекают иначе. Из-за отсутствия давления отолитов наступает нарушение ориентации в пространстве. Понятие «верх» и «низ» в космосе полностью исчезает. Вредит организму человека также отсутствие физической нагрузки. В таком состоянии мышечная ткань атрофируется, если не предпринимать никаких мер. С её деградацией страдает и костная ткань. При отсутствии нагрузки в кости тела поступает меньше фосфора.

Возникают сложности с питанием и глотанием жидкостей. Все жидкости при этом стремятся принять сферическую форму, что очень затрудняет повседневные вещи. Даже обычный насморк в условиях невесомости может оказаться очень тяжёлым испытанием для организма из-за того, что мокроты не выводятся под действием силы тяжести, а образуют сферические капли.

Для поддержания необходимого тонуса космонавты постоянно тренируются по несколько часов в день. При отходе ко сну привязывают себя специальными ремешками, чтобы не получить травму во время сна.

Для питания космонавтов разработана специальная пища в тюбиках и хлеб, который не крошится.

Прежде, чем длительное время испытывать невесомость, человек должен ощутить её действие на земле, чтобы выяснить, как в дальнейшем будет на него воздействовать отсутствие силы тяжести.