Схема электрическая прибора для измерения емкости конденсаторов. Самодельные измерительные приборы

Приборы, у которых отсчет измеряемой емкости конденсатора производится по шкале стрелочного измерителя, называют фарадометрами или микрофарадометрами. Конденсаторный микрофарадометр, описанный ниже, отличается широким диапазоном измеряемых емкостей, простотой схемы и налаживания.

Принцип действия микрофарадометра основан на измерении среднего значения силы разрядного тока измеряемого конденсатора, периодически перезаряжаемого с частотой F . На рис. 1 приведена упрощенная схема измерительной части прибора, питаемого импульсным напряжением прямоугольной формы, поступающим от генератора импульсов Г. При наличии напряжения

Рис. 1. Упрощенная схема измерительной части прибора

U имп на выходе генератора через диод Д1 происходит быстрый заряд конденсатора С х. Параметры схемы выбираются таким образом, что время заряда конденсатора значительно меньше длительности импульса t и, поэтому конденсатор С х успевает зарядиться полностью до напряжения U имп еще до окончания действия последнего. В интервале времени t и между импульсами конденсатор разряжается через внутреннее сопротивление генератора R г и микроамперметр μА1, измеряющий среднее значение силы разрядного тока. Постоянная времени разрядной цепи конденсатора С х значительно меньше времени паузы t п , поэтому конденсатор практически полностью успевает разрядиться за время перерыва между импульсами, частота которых

Таким образом, в установившемся режиме количество электричества, накопленное конденсатором С х за один период и отдаваемое им при разряде, Q = С х U имп . При частоте следования импульсов F среднее значение силы тока, проходящего через микроамперметр при периодических разрядах конденсатора С х , равно:

I и = QF = С х U имп F , откуда

Из полученной формулы следует, что измеряемая емкость конденсатора С х пропорциональна силе разрядного тока и, следовательно, при стабильных значениях U имп и F стрелочный измеритель μА1 можно снабдить равномерной шкалой, проградуированной в значениях С х (практически используют имеющуюся линейную шкалу микроамперметра магнитоэлектрической системы).

На рис. 2 приведена принципиальная схема микрофарадометра, который позволяет измерять емкости конденсаторов примерно от 5 до 100 000 пФ на шкалах: 0-100; 0-1000; 0-10 000 и 0-100 000 пФ. Отсчет величины измеряемой емкости производится непосредственно по имеющейся шкале микроамперметра, что позволяет быстро и достаточно точно производить измерение. В качестве источника питания микрофарадомет-ра используется аккумулятор 7Д-0,1 или батарея «Крона». На шкале 0-100 пФ ток значительно меньше и сила его не превышает 4 мА. Погрешность измерения не более 5-7% от верхнего предела шкалы.

Заряд конденсатора С х осуществляется прямоугольными импульсами напряжения, создаваемыми несим-

метричным мультивибратором, смонтированным на транзисторах T1, Т2 с различной проводимостью. Мультивибратор генерирует периодическую последовательность прямоугольных импульсов напряжения с большой скважностью. Скачкообразное изменение частоты по-

Рис. 2. Принципиальная схема микрофарадометра

вторения импульсов производится секцией В1а переключателя В1, включающего в цепь положительной обратной связи один из конденсаторов С1- С4 плавное - переменным резистором R3. Этим же переключателем производится переход с одного предела измерения на другой.

Прямоугольные импульсы напряжения, выделяемые на резисторе R1, через контакты 1-2 кнопки В2 и диод Д1 заряжают один из образцовых конденсаторов С5 - С8 или измеряемый конденсатор С х (при нажатой кнопке В2). В промежутках между импульсами один из указанных конденсаторов (в зависимости от предела измерения и положения кнопки В2) разряжается через резисторы R1, R5 и микроамперметр μА1. Диод Д1 на показания микроамперметра не влияет, так как его обратное сопротивление значительно больше сопротивления цепи измерителя (R п + R5 ). Конденсаторы С5 - С8 предназначены для калибровки прибора и должны быть подобраны возможно точнее, с отклонением от номинала не более чем на ±2%.

В конструкции применены малогабаритные резисторы ВС = 0,125, конденсаторы КСО, СГМ, КБГИ. Пере

Рис. 3. Передняя панель прибора

менный резистор R3 типа СП-1. Переключатель В1 галетного типа на 4 положения и 2 направления. Микроамперметр - магнитоэлектрической системы на 50 мкА.

Один из вариантов расположения органов управления на передней панели приведен на рис. 3. Габариты конструкции определяются размерами микроамперметра и переключателя В1 и поэтому не приводятся. В случае необходимости прибор можно питать от сети переменного тока с помощью стабилизированного выпрямителя, обеспечивающего на выходе напряжение 9 В при силе тока нагрузки не менее 10 мА. Выпрямитель в этом случае целесообразно расположить в корпусе прибора.

Шкала измерителя емкости, как уже указывалось, практически линейна, поэтому нет необходимости наносить на имеющуюся шкалу микроамперметра специальные метки между нулем и последним делением. Шкала

микроамперметра, имеющая, например, оцифрованные отметки 0, 20, 40... 1000 мкА, верна на любом пределе измерения емкости конденсаторов. Изменяется только цена деления. Так на пределах 0-100; 0-1000; 0-10 000 и 0-100 000 показания микроамперметра надо соответственно умножать на 1; 10; 10 2 и 10 3 . Если шкала микроамперметра имеет всего 50 делений, то показания микроамперметра, в зависимости от указанных пределов измерения надо умножать на 2; 2 10; 2 10 2 ; 2 10 3

Налаживание прибора обычно каких-либо затруднений не вызывает, если он собран из заведомо исправных деталей и при монтаже не допущено ошибок. О работе мультивибратора можно судить по шкале микроамперметра, показания которого должны изменяться при изменении положения движка переменного резистора R3 на любом из четырех пределов измерения.

Установив переключатель В1 в положение 1 (шкала 0-100 пФ), переменным резистором R3 добиваются отклонения стрелки микроамперметра на всю шкалу. Если этого получить не удается, движок резистора R3 устанавливают в среднее положение и подбирают величину емкости конденсатора С1 . Более точно стрелку на конец шкалы устанавливают резистором R3 . После этого переключатель В1 переводят в положение 2 (шкала 0-1000 пФ) и, не трогая резистор R3 , подбирают емкость конденсатора С2 так, чтобы стрелка микроамперметра находилась вблизи конца шкалы. Аналогично уточняют значение емкости конденсаторов СЗ и С4 в положениях 3 и 4 переключателя В1 (на шкалах 0-10 000 и 0-100 000 пФ).

На этом налаживание прибора заканчивается. Порядок измерения емкости конденсаторов следующий. Подключив конденсатор С х к гнездам Гн1 , выключателем В3 включают прибор и переключателем В1 устанавливают нужный предел измерения. Затем резистором R3 стрелку микроамперметра устанавливают на последнее деление шкалы и, нажимая кнопку В2 , производят отсчет измеряемой емкости по шкале с учетом цены ее деления. Если при нажатой кнопке стрелка микроамперметра зашкаливает, переключатель В1 переводят на более высокий предел измерения и повторяют измерения. Если же стрелка устанавливается в самом начале

шкалы, переключатель переводят на более низкий предел измерения.

В заключение укажем, что минимальное значение емкости, измеряемой на шкале 0-100 пФ, зависит от начальной емкости между гнездами Гн1 , которую при монтаже следует свести к минимуму. Перед подключением конденсатора к прибору следует убедиться в отсутствии в нем пробоя, так как последний может привести к повреждению микроамперметра и диода. Если порядок измеряемой емкости неизвестен, процесс измерения следует начинать с наиболее высокого предела измерения (0-100 000 пФ).

При желании повысить точность измерения можно увеличить число пределов (шкал). Для этого надо использовать переключатель В1 с большим числом положений (равным числу пределов), установить новые образцовые конденсаторы, емкости которых должны соответствовать верхнему значению выбранных пределов измерения, а также подобрать номиналы конденсаторов (вместо C1-С4 ), определяющих частоту следования импульсов напряжения мультивибратора.

Это измеритель ESR (ЭПС) + измеритель ёмкости конденсаторов.

Прибор измеряет ЭПС (эквивалентное последовательное сопротивление) конденсатора и его ёмкость измеряя время зарядки постоянным током. В роли источника тока выступает управляемый стабилитрон TL431 и p-n-p транзистор.

Ёмкость меряет в пределах 1 - 150 000мкФ, ESR - до 10 Ом.

Вся конструкция была успешно позаимствована с сайта pro-radio, где Олег Гинц (он же GO и он же автор конструкции) выложил свою работу на общее обозрение. Эта конструкция была повторена не один десяток, а то и сотню раз, опробована и одобрена народом. При правильной сборке остаётся лишь выставить поправочные коэффициенты на ёмкость и сопротивление.

Прибор собран на микроконтроллере PIC16F876A, распространённом ЖК-дисплее типа WH-1602 на базе HD44780 и рассыпухе. Контроллер можно заменить на PIC16F873 - в конце статьи есть прошивки на обе модели.

Ёмкость и ESR конденсаторов около 1000 мкф измеряет за доли секунды. Так же с большой точностью измеряет малое сопротивление. То есть можно пользоваться, когда необходимо сделать шунт для амперметра:)

Так же хорошо меряет ёмкость внутрисхемно. Только, если есть индуктивности - может врать. В этом случае выпаиваем элемент.

Корпус, Z-42, в качестве коннектора подключения щупов по четырёхпроводной схеме выбрал старый, добрый, надёжный USB 2.0 порт.

Старый, советский, подсохший электролитический конденсатор.

А это нерабочий конденсатор с цепи питания процессора на материнской плате.

Как работает.

Конденсатор предварительно разряжается, включается источник тока 10 мА, оба входа измерительного усилителя подключаются на Сх, делается задержка порядка 3.6 мкс для устранения влияния звона в проводах. Одновременно через ключи DD2.3 || DD2.4 заряжается конденсатор С1, который собственно и запоминает самое большое напряжение, которое было на Cx. Следующим шагом размыкаются ключи DD2.3 || DD2.4 и выключается источник тока. Инвертирующий вход ДУ остается подключенным к Сх, на котором после выключения тока напряжение падает на величину 10мА*ESR. Вот собственно и все - далее спокойно можно мерять напряжение на выходе ДУ - там два канала, один с КУ=330 для предела 1 Ом и КУ=33 для 10 Ом.

На форуме-источнике, где выложена печатная плата и прошивки - печатка была двухсторонняя. С одной стороны - все дорожки, с другой - сплошной слой земли и просто дырки под компоненты. У меня такого текстолита на момент сборки не было, поэтому пришлось делать землю проводами. Так или иначе, особых сложностей это не доставило и на работоспособности и точности прибора никак не отразилось.

На последней картинке - источник тока, источник отрицательного напряжения и силовой ключ.

Плата простая, настройка - ещё проще.

Первое включение - проверяем наличие +5V после 78L05 и -5V (4.7V) на выходе DA4 (ICL7660). Подбором R31 добиваемся нормальной контрастности на индикаторе.
Включение прибора при нажатой кнопке Set переводит его в режим установки корректирующих коэффициентов. Их всего три - для каналов 1 Ом, 10 Ом и для ёмкости. Изменение коэффициентов кнопками + и -, запись в EEPROM и перебор - той же кнопкой Set.
Имеется так же отладочный режим - в этом режиме на индикатор выводятся измеренные значения без обработки - для емкости - состояние таймера (примерно 15 отсчетов на 1 мкФ) и оба канала измерения ESR (1 шаг АЦП=5V/1024). Переход в отладочный режим - при нажатой кнопке "+"
И еще один момент - установка нуля. Для этого замыкаем вход, нажимаем и удерживаем кнопку "+" и с помощью R4 добиваемся минимальных показаний (но не нулевых!) одновременно по обоим каналам. Не отпуская кнопку "+", нажимаем Set - на индикатор выведется сообщение о сохранении U0 в EEPROM.
Далее измеряем образцовые сопротивления 1 Ом (или меньше), 10 Ом и емкость (которой доверяете) , определяем поправочные коэффициенты. Прибор выключаем, включаем при нажатой кнопке Set и устанавливаем к-ты соответственно результатам измерений.
Плата в три этапа, вид сверху:

Схема прибора:

Привожу небольшой список FAQ, сформировавшийся на форуме-источнике.

Q. При подключении резистора в 0,22 Ома - пишет - 1 с копейками, при подключении резистора в 2,7 Ом - пишет ESR > 12.044 Ом.

A. Отклонения могут быть, но в пределах 5-10%, а тут в 5 раз. Надо проверять аналоговую часть, виновниками могут быть в порядке убывания вероятности:

источник тока,
дифф. усилитель
ключи
Начните с источника тока. Он должен выдавать 10 (+/-0.5) мА, его проверить можно либо в динамике осциллографом, нагрузив на 10 ом - в импульсе должно быть не более 100 мВ. Если ловить иголки не хочется - проверьте в статике - уберите перемычку (нулевое сопротивление) между RC0 и R3, нижний конец R3 на землю, и включаете миллиамперметр между коллектором VT1 и землей (правда возможно будет мешать VT2 - тогда при проверке коллектор VT1 лучше отключить от схемы).

На деле решение было такое: -"Перепутал я сослепу 102 и 201 - и вместо 1 килоома забубенил 200 ом."

Q. Возможна ли замена TL082 на TL072?

A. К ОУ особых требований нет кроме полевиков на входе, с TL072 должно работать.

Q. Зачем на вашей печатке сделаны два входных разъёма: один подключен к диодам-транзисторам, а другой - к DD2?

A. Чтобы скомпенсировать падение напряжения на проводах, тестируемый элемент лучше подключать по 4-х проводной схеме, поэтому и разъем 4-х контактный, а провода объединяются вместе уже на крокодилах.

Q. На холостом ходу отрицательное напряжение -4 Вольта и сильно зависит от типа конденсатора между 2 и 4 выводами ICL 7660. С обычным электролитом всего -2 В было.

A. После замены на танталовый, выдранный с 286 материнки стало -4 В.

Q. Индикатор WH-1602 не работает или греется контроллер индикатора.

A. Неверно указана цоколевка индикатора WINSTAR WH-1602 в плане разводки питания, перепутаны 1 и 2 выводы! На alldatasheet 1602L, который совпадает с цоколевкой, указанной Winstar и на схеме. Мне же попался 1602D - вот он имеет "спутанные" 1 и 2 выводы.

Надпись Cx ---- выводится в следующих случаях:

При измерении емкости срабатывает тайм-аут, т.е. за отведенное время измерения прибор не дождался переключения обоих компараторов. Это происходит при измерении резисторов, закороченных щупах, либо когда измеряемая емкость >150000 мкФ и т.п.
Когда напряжение, измеренное на выходе DA2.2 превысит 0x300 (это показания АЦП в 16-ричном коде), процедура измерения емкости не выполняется и на индикатор также выводится Cx ----.
При разомкнутых щупах (или R>10 Ом) так и должно быть.

Знак ">" в строке ESR появляется при превышении напряжения на выходе DA2.2 0x300 (в единицах АЦП)

Подводя итог: травим плату, без ошибок паяем элементы, прошиваем контроллер - и прибор работает.

Спустя пару лет решил сделать прибор автономным. По мотивам зарядного устройства для смартфонов был сделан step-up преобразователь на 7 В выходного напряжения. Можно было бы сразу на 5 В, но так как плата закреплена в корпусе на клей - отдирать не стал, да и падение напряжения на КРЕН7805 в два Вольта - небольшая потеря:)

Мой новый конструктор выглядел так:

Маленькая платка преобразователя была "обута" в термоусадку, произведена распайка всех проводов, разъём для кроны нам больше не понадобится. Просто дырка в корпусе смотрится не очень, поэтому мы его оставим, но провода откусим. Внутри корпуса не осталось места для аккумулятора, поэтому я приклеил батарею на тыльную сторону прибора и приделал ему ножки, чтобы в рабочем состоянии он не лежал на аккумуляторе.

На лицевой стороне вырезал отверстия для кнопки питания и светодиода индикации успешной зарядки. Индикацию заряда аккумулятора не делал.

Потом решил, что раз пошла такая пьянка неплохо было бы видать экран в темноте, на случай ремонта при свечах, если отключат свет, а работать хочется:)

Но это уже после того, как появился более понтовый RLC-2. Подробнее об этом приборе в этой статье.

ESR метр своими руками . Есть широкий перечень поломок аппаратуры, причиной которых как раз является электролитический . Главный фактор неисправности электролитических конденсаторов, это знакомое всем радиолюбителям «высыхание», которое возникает по причине плохой герметизации корпуса. В данном случае увеличивается его емкостное или, иначе говоря, реактивное сопротивление в следствии уменьшения его номинальной емкости.

Помимо этого, в ходе работы в нем проходят электрохимические реакции, которые разъедают точки соединения выводов с обкладками. Контакт ухудшается, в итоге образуется «контактное сопротивление», доходящее иногда до нескольких десятков Ом. Это точно также, если к исправному конденсатору последовательно подключить резистор, и к тому же этот резистор размещен внутри него. Такое сопротивление еще именуют «эквивалентное последовательное сопротивление» или же ESR.

Существование последовательного сопротивления отрицательно влияет на работу электронных устройств, искажая работу конденсаторов в схеме. Чрезвычайно сильное влияние оказывает повышенное ESR (порядка 3…5 Ом) на работоспособность , приводя к сгоранию дорогих микросхем и транзисторов.

Ниже в таблице приведены средние величины ESR (в миллиоммах) для новых конденсаторов различной емкости в зависимости от напряжения, на которое они рассчитаны.

Не секрет, что реактивное сопротивление уменьшается с повышением частоты. К примеру, при частоте 100кГц и емкости 10мкФ емкостная составляющая будет не более 0,2 Ом. Замеряя падение переменного напряжения имеющего частоту 100 кГц и выше, можно полагать, что при погрешности в районе 10…20% итогом замера будет активное сопротивление конденсатора. Поэтому совсем не сложно собрать .

Описание ESR метра для конденсаторов

Генератор импульсов, имеющий частоту 120кГц, собран на логических элементах DD1.1 и DD1.2. Частота генератора определяется RC-цепью на элементах R1 и C1.

Для согласования введен элемент DD1.3. Для увеличения мощности импульсов с генератора в схему введены элементы DD1.4…DD1.6. Далее сигнал проходит через делитель напряжения на резисторах R2 и R3 и поступает на исследуемый конденсатор Сх. Блок измерения переменного напряжения содержит диоды VD1 и VD2 и мультиметр, в качестве измерителя напряжения, к примеру, М838. Мультиметр необходимо перевести в режим измерения постоянного напряжения. Подстройку ESR метра осуществляют путем изменения величины R2.

Микросхему DD1 — К561ЛН2 можно поменять на К1561ЛН2. Диоды VD1 и VD2 германиевые, возможно использовать Д9, ГД507, Д18.

Радиодетали ESR метра расположены на , которую можно изготовить своими руками. Конструктивно устройство выполнено в одном корпусе с элементом питания. Щуп Х1 выполнен в виде шила и прикреплен к корпусу устройства, щуп X2 – провод не более 10 см в длину на конце которого игла. Проверка конденсаторов возможна прямо на плате, выпаивать их не обязательно, что существенно облегчает поиск неисправного конденсатора во время ремонта.

Настройка устройства

1, 5, 10, 15, 25, 30, 40, 60, 70 и 80 Ом.

К щупам X1 и X2 необходимо подсоединить резистор в 1 Ом и вращением R2 добиться, чтобы на мультиметре было 1мВ. Затем вместо 1 Ом подключить следующий резистор (5 Ом) и не изменяя R2 записать показание мультиметра. То же самое проделать и с оставшимися сопротивлениями. В результате этого получится таблица значений, по которой можно будет определять реактивное сопротивление.

В данной статье мы дадим наиболее полную инструкцию, которая позволит сделать измеритель ёмкости конденсаторов своими руками, без помощи квалифицированных мастеров.

К сожалению, аппаратура не редко выходит из строя. Причина чаще всего одна – появление электролитического конденсатора. Все радиолюбители знакомы с так называемым «высыханием», которое появляется из-за нарушения герметичности корпуса прибора. Возрастает реактивное сопротивление из-за снижения номинальной емкости.

Далее, во время эксплуатации начинают происходить электрохимические реакции, они разрушают стыки выводов. В результате контакты нарушаются, образовывая контактное сопротивление, которой исчисляется, порой десятками Oм. То же самое будет происходить при подключении к рабочему конденсатору резистора. Наличие этого самого последовательного сопротивления скажется негативно не работе электронного устройства, в схеме будет искажаться вся работа конденсаторов.

Из-за сильнейшего влияния сопротивления в диапазоне три-пять Ом, приходят в негодность импульсные источники питания, ведь в них перегорают дорогостоящие транзисторы, а также микросхемы. Если детали при сборке прибора были проверены, а при монтаже не допущены ошибки, то с его наладкой не возникнет проблем.

Кстати, предлагаем Вам присмотреть себе новый паяльник на Алиэкспресс — ССЫЛКА (отличные отзывы). Либо присмотреть себе что-нибудь из паяльного оборудования в магазине «ВсеИнструменты.ру» — ссылка на раздел с паяльниками .

Схема, принцип работы, устройство

Данная схема используется с применением операционного усилителя. Прибор, который мы собираемся сделать своими руками, позволит производить измерения ёмкости конденсаторов в диапазоне от пары пикoфарад до одного микрофарада.

Давайте разберемся с приведенной схемой :

  • Поддиапазоны . У агрегата есть 6 «поддиапазонов», у них высокие границы равняются 10, 100; 1000 пф, а также 0,01, 0,1 и 1 мкф. Отсчитывается емкость по измерительной сетке микроамперметра.
  • Назначение . Основой работы прибора является замер переменного тока, он проходит сквозь конденсатор, который необходимо исследовать.
  • На усилителе DА 1 находится генератор импульсов. Колебания их повтора подчиняется емкости С 1- С 6 конденсаторов, а также позиции тумблера «подстроечного» резистора R 5. Частота будет переменной от 100 Гц до 200 кГц. Подстроечному резистору R 1 определяем соразмерную модель колебаний при выходе генератора.
  • Указанные на схеме диоды, как D 3 и D 6, резисторы (налаженные) R 7- R 11, микроамперметр РА 1, составляют сам измеритель переменного тока. Внутри микроамперметра сопротивление обязано составлять не больше 3 кОм, с целью, чтобы погрешность при замере не превысила десяти процентов на диапазоне до 10 пФ.
  • К другим поддиапазонам параллельно Р A 1 подсоединяют подстроечные резисторы R 7 – R 11. Нужный измерительный поддиапазон настраивают при помощи тумблера S А 1. Одна категория контактов переключает конденсаторы (частотозадающие) С 1 и С 6 в генераторе, второй переключает в индикаторе резисторы.
  • Чтобы прибор получал энергию, ему нужен 2-полярный стабилизированный источник (напряжение от 8 до 15 В). У частотозадающего конденсатора могут на 20 % разниться номиналы, однако сами они обязаны иметь высокую стабильность временную и температурную.

Конечно, для обычного человека, не разбирающегося в физике, это всё может показаться сложным, но вы должны понимать, чтобы сделать измеритель ёмкости конденсаторов своими руками, нужно обладать определенными знаниями и навыками. Далее поговорим о том, как наладить прибор.

Наладка измерительного прибора

Чтобы произвести правильную наладку, следуйте инструкции:

  1. Сперва достигается симметричность колебаний при помощи резистора R 1. «Бегунок» у резистора R 5 находится посередине.
  2. Следующим действием будет подключение эталонного конденсатора 10 пф к клеммам, отмеченным значком сх. При помощи резистора R 5, переставляют стрелу микроамперметра на соответственную шкалу ёмкости эталонного конденсатора.
  3. Далее проверяется форма колебания при выходе генератора. Тарировка проводится на всех поддиапазонах, здесь применяют резисторы R 7 и R 11.

Механизм устройства может быть разным. Параметры размеров зависят от типа микроамперметра. Каких-то особенностей при работе с прибором не выделяется.

Создание разных моделей измерителей

Модель серии AVR

Сделать такой измеритель можно на базе переменного транзистора. Вот инструкция:

  1. Подбираем контактор;
  2. Замеряем выходное напряжение;
  3. отрицательное сопротивление в измерителя емкости не больше 45 Ом;
  4. Если проводимость 40 мк, то перегрузка составит 4 Ампера;
  5. Для повышения точности измерения, нужно использовать компараторы;
  6. Также есть мнение, что лучше использовать только открытые фильтры, так как для них не страшны импульсные помехи в случае большой загруженности;
  7. Также рекомендуется использовать полюсные стабилизаторы, а вот для модификации устройства не подходят только сеточные компараторы;

Перед тем, как включать измеритель ёмкости конденсаторов, нужно выполнить замер сопротивления, который должен быть примерно 40 Ом для хорошо сделанных устройств. Но показатель может отличаться, в зависимости от частотности модификации.

  • Модуль на базе PIC16F628A может быть регулируемого типа;
  • Лучше не устанавливать фильтры высокой проводимости;
  • Перед тем, как начнем паять, нужно проверить выходное напряжение;
  • Если сопротивление слишком высокое, то меняем транзистор;
  • Применяем компараторы для преодоления импульсных помех;
  • Дополнительно используем проводниковые стабилизаторы;
  • Дисплей может быть текстовым, что проще всего и весьма удобно. Ставить их нужно через канальные порты;
  • Далее с помощью тестера настраиваем модификацию;
  • Если показатели емкости конденсаторов слишком высокие, то меняем транзисторы с малой проводимостью.
  • Более подробно о том, как сделать измеритель ёмкости конденсаторов своими руками можно узнать из видео ниже.

    Видео инструкции

    В последнее время в радиолюбительской и профессиональной литературе очень много внимания уделяется таким устройствам как электролитические конденсаторы. И не удивительно, ведь частоты и мощности растут «на глазах», и на эти конденсаторы ложится огромная ответственность за работоспособность как отдельных узлов, так и схемы в целом.

    Хочу сразу предупредить, что большинство узлов и схемных решений было почерпнуто из форумов и журналов, поэтому я никакого авторства со своей стороны не заявляю, напротив, хочу помочь начинающим ремонтникам определиться в бесконечных схемах и вариациях измерителей и пробников. Все предоставленные здесь схемы были не однократно собраны и проверены в работе, и сделаны соответствующие выводы по работе той или иной конструкции.

    Итак, первая схема, ставшая чуть ли не классикой для начинающих ESR Метростроителей «Манфред» - так ее любезно называют форумчане, по имени ее созидателя, Манфреда Луденса ludens.cl/Electron/esr/esr.html

    Её повторили сотни, а может и тысячи радиолюбителей, и остались в основном довольны результатом. Основное его достоинство, это последовательная схема измерения, благодаря чему, минимальному ESR соответствует максимальное напряжение на шунтовом резисторе R6, что, в свою очередь полезно сказывается на работе диодов детектора.

    Эту схему я сам не повторял, но пришел к аналогичной путем проб и ошибок. Из недостатков можно отметить «гуляние» нуля от температуры, и зависимость шкалы от параметров диодов и ОУ. Повышенное напряжение питания, требуемое для работы прибора. Чувствительность прибора можно легко повысить, уменьшив резисторы R5 и R6 до 1-2 ома и, соответственно увеличив усиление ОУ, возможно придется его заменить на 2 более скоростных.

    Мой первый пробник ЕПС, исправно работающий по сегодняшний день.


    Схемы не сохранилось, да ее и можно сказать и не было, собрал со всего миру по нитке, то что меня устраивало схемотехнически, правда, за основу была взята такая вот схема из журнала радио:


    Были произведены следующие изменения:

    1. Питание от литиевого аккумулятора мобильника
    2. исключен стабилизатор, так как пределы рабочих напряжений Литиевого Аккумулятора довольно узкие
    3. трансформаторы TV1 TV2 шунтированы резисторами 10 и 100 Ом, для уменьшения выбросов при измерении малых ескостей
    4. Выход 561лн2 был буферизирован 2мя комплементарными транзисторами.

    В общем получился такой вот девайс:


    После сборки и калибровки данного девайса были тут-же отремонтированы 5 цифровых телефонных аппаратов «Мередиан», которые уже лет 6 лежали в коробке с надписью «безнадежные». Все в отделе начали делать себе аналогичные пробнички:).

    Для большей универсализации, мною были добавлены дополнительный функции:

    1. приемник инфрокрасного излучения, для визуальной и слуховой проверки пультов ДУ, (очень востребованная функция для ремонтов телеков)
    2. подсветка места касания щупами конденсаторов
    3. «вибрик» от мобилки, помогает локализовать плохие пайки и микрофонный эффект в деталях.

    Видео проверки пульта

    А недавно на форуме «radiokot.ru» господин Simurg выложил статью посвященную аналогичному прибору. В нем он применил низковольтное питание, мостовую схему измерения, что позволило измерять конденсаторы со сверхнизким уровнем ESR.


    Его коллега RL55 взяв схему Simurg за основу, предельно упростил приборчик, по его заявлениям не ухудшив параметры. Его схема выглядит вот так:


    Прибор ниже, мне пришлось собирать на скорую руку, как говорится «по нужде». Был в гостях у родственников,так там телевизор сломался, никто не мог его отремонтировать. Вернее ремонтировать удавалось, но не более чем на неделю, все время горел транзистор строчной развертки, схемы телевизора не было. Тут вспомнил, что видел на форумах простенький пробничек, схему помнил наизусть, родственник тоже немного занимался радиолюбительством, аудио усилители «клепал», поэтому все детали быстро нашлись. Пару часов пыхтения паяльником, и родился вот такой приборчик:


    Были в 5 минут локализованы и заменены 4 подсохших електролитика, которые мультиметром определялись как нормальные, выпито за успех некоторое количество благородного напитка. Телек после ремонта уже 4 года работает исправно.


    Прибор этого типа стал как панацея в трудные минуты, когда нет с собою нормального тестера. Собирается быстро, производится ремонт, и напоследок торжественно дарится хозяину на память, и, «на случай чего». После такой церемонии душа платящего как правило раскрывается вдвое, а то и втрое шире:)

    Захотелось чего-то синхронного, начал думать над схемой реализации, и вот в журнале «Радио 1 2011», как по мановению вошебнлй палочки опубликована статья, даже думать не пришлось. Решил проверить, что за зверь. Собрал, получилось вот так:


    Особого восторга изделие не вызвало, работает практически как и все предыдущие, есть, конечно разница в показаниях в 1-2 деления, в определенных случаях. Может его показания и более достоверны, но пробник есть пробник, на качестве дефектации это почти никак не отражается. Тоже снабдил светодиодом, чтобы смотреть «куда суешь?».


    В общем, для души и ремонтов делать можно. А для точных измерений надо поискать схему измерителя ESR посолиднее.

    Ну, и на последок на сайте monitor.net, участник buratino выложил простейший проект, как из обычного дешевого цифрового мультиметра можно сделать пробник ESR. Проект так меня заинтриговал, что решил попробовать, и вот что у меня из этого вышло.


    Корпус приспособил от маркера