Принципы построения схем тепловых сетей. Схемы теплоснабжения и их конструктивные особенности

Учитывая зависимость отчисла потребителœей, их потребностей в тепловой энергии, а также требований к качеству и бесперебойности теплоснабжения для определœенных категорий абонентов тепловые сети выполняются радиальными (тупиковыми) или кольцевыми.

Тупиковая схема (рисунок) является наиболее распространенной. Она применяется при обеспечении тепловой энергией города, квартала или посœелка от одного источника – теплоэлектроцентрали или котельной. По мере удаления магистрали от источника уменьшаются диаметры теплопроводов 1, упрощаются конструкция, состав сооружений и оборудование на тепловых сетях в соответствии со снижением тепловой нагрузки. Для этой схемы характерно то, что при аварии магистрали абоненты, подключенные к тепловой сети после места аварии, не обеспечиваются тепловой энергией.

Для повышения надежности обеспечения потребителœей 2 тепловой энергией между смежными магистралями устраивают перемычки 3, которые позволяют при аварии какой-либо магистрали переключать подачу тепловой энергии. Согласно нормам проектирования тепловых сетей, устройство перемычек обязательно, в случае если мощность магистралей 350 МВт и более. В этом случае диаметр магистралей, как правило, 700 мм и более. Наличие перемычек частично исключает основной недостаток этой схемы и создает возможность бесперебойного теплоснабжения потребителœей. В аварийных условиях допускается частичное снижение подачи тепловой энергии. К примеру, согласно Нормам проектирования, перемычки рассчитывают на обеспечение 70 %-ной суммарной тепловой нагрузки (максимального часового расхода на отопление и вентиляцию и среднечасового на горячее водоснабжение).

В развивающихся районах города резервирующие перемычки предусматривают между смежными магистралями независимо от тепловой мощности, но исходя из очередности развития. Перемычки предусматривают также и между магистралями в тупиковых схемах при теплоснабжении района от нескольких источников теплоты (ТЭЦ, районных и квартальных котельных 4), что повышает надежность теплоснабжения. Вместе с тем, в летний период при работе одной или двух котельных на нормальном режиме можно отключать несколько котельных, работающих с минимальной нагрузкой. При этом наряду с повышением КПД котельных создаются условия для своевременного проведения профилактического и капитального ремонтов отдельных участков тепловой сети и собственно котельных. На крупных ответвлениях (см. рисунок) предусматриваются секционирующие камеры 5. Для предприятий, не допускающих перерыва в подаче тепловой энергии, предусматривают схемы тепловых сетей с двусторонним питанием, местные резервные источники или кольцевые схемы.

Кольцевая схема (рисунок) предусматривается в крупных городах. Для устройства таких тепловых сетей требуются большие капитальные вложения по сравнению с тупиковыми. Достоинство кольцевой схемы – наличие нескольких источников, благодаря чему повышается надежность теплоснабжения и требуется меньшая суммарная резервная мощность котельного оборудования. При увеличении стоимости кольцевой магистрали снижаются капитальные затраты на строительство источников тепловой энергии. Кольцевая магистраль 1 подключена к трем ТЭЦ, потребители 2 через центральные тепловые пункты 6 присоединœены к кольцевой магистрали по тупиковой схеме. На крупных ответвлениях предусмотрены секционирующие камеры 5. Промышленные предприятия 7 также присоединœены по тупиковой схеме.

Бесканальная прокладка теплопроводов по конструкции тепловой изоляции подразделяется на засыпную, сборную, сборно-литую и монолитную. Основной недостаток бесканальной прокладки – повышенная просадка и наружная коррозия теплопроводов, а также увеличенные теплопотери в случае нарушения гидроизоляции теплоизолирующего слоя. В значительной мере недостатки бесканальных прокладок тепловых сетей устраняются при использовании теплогидроизоляции на базе полимербетонных смесей.

Теплопроводы в каналах укладывают на подвижные или неподвижные опоры. Подвижные опоры служат для передачи собственного веса теплопроводов на несущие конструкции. Вместе с тем, они обеспечивают перемещение труб, происходящее вследствие изменения их длины при изменении их длинны при изменении температуры теплоносителя. Подвижные опоры бывают скользящие и катковые.

Скользящие опоры используют в тех случаях, когда основание под опоры должна быть сделано достаточно прочным для восприятия больших горизонтальных нагрузок. В противном случае устанавливают катковые опоры, создающие меньшие горизонтальные нагрузки. По этой причине при прокладке трубопроводов больших диаметров в тоннелях, на каркасах или мачтах следует ставить катковые опоры.

Неподвижные опоры служат для распределœения термических удлинœений теплопровода между компенсаторами и для обеспечения равномерной работы последних. В камерах подземных каналов и при надземных прокладках неподвижные опоры выполняют в виде металлических конструкций, сваренных или соединœенных на болтах с трубами. Эти конструкции заделывают в фундаменты, стены и перекрытия каналов.

Для восприятия температурных удлинœений и разгрузки теплопроводов от температурных напряжений на теплосœети устанавливают радиальные (гибкие и волнистые шарнирного типа) и осœевые (сальниковые и линзовые) компенсаторы.

Гибкие компенсаторы П - и S - образные изготовляют из труб и отводов (гнутых, крутоизогнутых и сварных) для теплопроводов диаметром от 500 до 1000 мм. Такие компенсаторы устанавливают в непроходных каналах, когда невозможен осмотр проложенных теплопроводов, а также в зданиях при бесканальной прокладке. Допустимый радиус изгиба труб при изготовлении компенсаторов составляет 3,5…4,5 наружного диаметра трубы.

С целью увеличения компенсирующей способности гнутых компенсаторов и уменьшения компенсационных напряжений обычно их предварительно растягивают. Для этого компенсатор в холодном состоянии растягивается в основании петли, с тем чтобы при подаче горячего теплоносителя и соответствующем удлинœении теплопровода плечи компенсатора оказались в положении, при котором напряжения будут минимальные.

Сальниковые компенсаторы имеют небольшие размеры, большую компенсирующую способность оказывать незначительное сопротивление протекающей жидкости. Их изготовляют односторонними и двусторонними для труб диаметром от 100 до 1000 мм. Сальниковые компенсаторы состоят из корпуса с фланцем на уширенной передней части. В корпус компенсатора вставлен подвижный стакан с фланцем для установки компенсатора на трубопроводе. Чтобы сальниковый компенсатор не пропускал теплоноситель между кольцами, в промежутке между корпусом и стаканом укладывают сальниковую набивку. Сальниковую набивку вжимают фланцевым вкладышем с помощью шпилек, ввинчиваемых в корпус компенсатора. Компенсаторы крепят к неподвижным опорам.

Камера для установки задвижек на тепловых сетях изображена на рисунке. При подземных прокладках теплосœетей для обслуживания запорной арматуры устраивают подземные камеры 3 прямоугольной формы. В камерах прокладывают ответвления 1 и 2 сети к потребителям. Горячая вода в здание подается по теплопроводу, укладываемому с правой стороны канала. Подающий 7 и обратный 6 теплопроводы устанавливают на опоры 5 и покрывают изоляцией. Стены камер выкладывают из кирпича, блоков или панелœей, перекрытия сборные – из желœезобетона в виде ребристых или плоских плит, дно камеры – из бетона. Вход в камеры через чугунные люки. Важно заметить, что для спуска в камеру под люками в стене заделывают скобы или устанавливают металлические лестницы. Высота камеры должна быть не менее 1800 мм. Ширину выбирают с таки расчетом, чтобы расстояния между стенами и трубами были не менее 500 м.

Вопросы для самоконтроля:

1. Что называют тепловыми сетями?

2. Как классифицируются тепловые сети?

3. В чем преимущества и недостатки кольцевой и тупиковой сетей?

4. Что называют теплопроводом?

5. Назовите способы прокладывания тепловых сетей.

6. Назовите назначение и виды изоляции теплопроводов.

7. Назовите трубы, из которых монтируют тепловые сети.

8. Назовите назначение компенсаторов.

С. теплоснабжения – это совокупность устройств для производства тепловой энергии, её транспортирование, распределение и потреблении.

Схема:

1) Источник тепловой энергии (ТЭЦ, РК, ГК, АК, и тд.). 2) Теплопроводы для транспортирования тепловой энергии от источника к потребителю. 3) Тепловые пункты для присоединения, учёта и контроля потребления тепловой энерг. 4) Потребители тепловой энергии (ОВ + ГВС + технологические нужды).

Виды тепловых пунктов: 1. центральные (обслуживают несколько зданий или кварталов и отдельные здания). 2. местные (обслуживают здание в котором и расположены).

2.Классификация систем теплоснабжения.

1
) По расположению источника тепловой эн.: Централизованная (источник тепловой энергии обслуживает 2 и более здания). Децентрализованная (обслуживает одно здание или отдельные помещения). 2) По теплоносителю (водяные и паровые). 3) По способу приготовления воды на ГВС: Открытые (вода для ГВС отбирается из тепловых сетей), Закрытые (вода готовится в водоподогревателях). 4) По количеству трубопроводов (системы теплоснабжения бывают 1,2,3,4,5 и т.д. трубные). Однотрубные бывают только открытые:

Основной тип теплоснабжения это двухтрубная система. (принимается в тех случаях когда тепловая нагрузка может быть обеспечена одним видом теплоносителя и приблизительно одинаковой температурой. 2-х трубные системы могут быть открытые и закрытые.

трёхтрубная:

четырёхтрубная в жилом квартале:

для обеспечения постоянной температуры воды

системе ГВС при малом водоразборе или при

его отсутствии

5) По конфигурации (тс бывают тупиковые, кольцевые и кольцевые с контрольно распределительными пунктами).

3. Схемы тепловых сетей.

Тупиковая: достоинства (простая схема, небольшие капиталовложения), недостатки (низкая надёжность, т.к. потребитель получает тепловую эн. только с одного направления, а при аварии полностью отключается от системы теплоснабжения).

С
хема:

С целью повышения надёжности все ТС делят на отдельные участки с регулирующими задвижками для сокращения ликвидации аварии.

Кольцевая: достоинства (более высокая надёжность т.к. потребители могут получать тепловую эн. с двух направлений. К кольцевой сети могут подключаться несколько источников тепловой эн., что повышает надёжность. Возможность использовать тепловую эн. источниками работающими на разных видах топлива). Недостатки (повышенные капиталовложения на 20-30 %. Более сложное регулирование тепловых нагрузок).

1. Магистральные трубопроводы тс.

2. Распределительные

3. Внутриквартальные

Кольцевая с контрольно распределительными пунктами.

Схема:

1.2.3. магистрали распределительные

квартальные. 4. секционная задвижка

5. головные задвижки распределител.

сетей. 6. Одно или 2-х трубная

перемычка.

Задвижка (а) открыта. при аварии (а)

закрыта, открыты (c , d ).

Устройство КРП увеличивает

затраты на 10%.

4.Опоры трубопроводов тепловых сетей.

Опоры бывают подвижные и не подвижные. Подвижные (скользящие, подвесные, роликовые, котковые). Опоры предназначены для восприятия веса трубопровода и обеспечивают его перемещение при температурных деформациях. Скользящие применяются при всех видах прокладки.



1. трубопровод

2. скользящая опора

3. опорная подушка

4. бетон

Роликовая опора:

1. ролик

µ ТР = 0,4

Котковая опора:

1
. каток

µ ТР = 0,2

Роликовые и катковые опоры не применяются при подземной безканальной, канальной и не проходных каналах, прокладке, т.к. требуют обслуживания.

Подвесные опоры:

1. тяга

2. пружина

3. хомут

Неподвижные опоры предназначены для восприятиявеса трубопровода и жёстко фиксирует трубопровод вместе её установки (хомутове, щитовые, лобовые).

Хомутовые опоры: 1. хомут


2. упоры

Применяется при всех видах прокладки

Щитовая опора :


1. железобетонный щит

воспринимающий нагрузку.

2.четырёхупорная неподвижная

опора

Применяется при всех видах

прокладки кроме надземной

на высоких опорах.

5. Компенсаторы тепловых сетей и правила их установки.

Компенсаторы служат для восприятия изменения длины трубопровода при его температурных деформациях. Компенсаторы бывают осевые и радиальные.

Осевые (сальниковые, линзовые, сильфонные).

Сальниковые:


1. корпус.2. стакан. 3. опорное

кольцо. 4. уплотнительное

кольцо. 5. Сальниковая набивка.

Достоинства (малые габариты,

небольшое гидравлическое

сопротивление, небольшие

затраты).

Недостатки (требуют переоди

ческого обслуживания, возможен

перекос осей корпуса и стакана,

что приводит к заклиниванию).

Применяются (на трубопроводах

d ≥100, при давлениях Р ≤ 2.5

МПа). ∆ L = 350мм.

Линзовые:


1. линза. 2. металлическая вставка для

уменьшения гидропотерь.

компенсирующая способность одной линзы

5мм. Установка более 5 линз нежелательна.

Достоинства(допускают радиальные

перемещения).

Сильфонные: + Не требуют обслуживания

- Большая стоимость

Радиальная компенсация осуществляется за счёт изгибов криволинейных участков, изгибов трубопровода (самокомпенсация), или за счёт специальных вставок.

Самокомпенсация: Специальные вставки:


омегообразный компенсатор

П
– образный компенсатор Достоинства П – образных компенсаторов:

устанавливается и изготавливается не посред

ственно на стройплощадках и не большие кап.

затраты.

Недостатки: увеличенные гидравлические

сопротивления.

Правила установки компенсаторов: 1. П – образные компенсаторы устанавливаются между неподвижными опорами по середине. 2. Устройства устанавливаются справа по ходу теплоносителя. 3. Острые углы не допускаются, если имеется острый угол то в углу необходима установка не подвижной опоры. 4. Сальниковые компенсаторы устанавливаются у неподвижной опоры. Сальниковые комп. запрещается устанавливать на криволинейных участках. 6. Арматура устанавливается между опорой и сальниковым комп.

В зависимости от числа потребителей, их потребностей в тепловой энергии, а также требований к качеству и бесперебойности теплоснабжения для определенных категорий абонентов тепловые сети выполняются радиальными (тупиковыми) или кольцевыми.

Тупиковая схема (рисунок) является наиболее распространенной. Она применяется при обеспечении тепловой энергией города, квартала или поселка от одного источника – теплоэлектроцентрали или котельной. По мере удаления магистрали от источника уменьшаются диаметры теплопроводов 1, упрощаются конструкция, состав сооружений и оборудование на тепловых сетях в соответствии со снижением тепловой нагрузки. Для этой схемы характерно то, что при аварии магистрали абоненты, подключенные к тепловой сети после места аварии, не обеспечиваются тепловой энергией.

Для повышения надежности обеспечения потребителей 2 тепловой энергией между смежными магистралями устраивают перемычки 3, которые позволяют при аварии какой-либо магистрали переключать подачу тепловой энергии. Согласно нормам проектирования тепловых сетей, устройство перемычек обязательно, если мощность магистралей 350 МВт и более. В этом случае диаметр магистралей, как правило, 700 мм и более. Наличие перемычек частично исключает основной недостаток этой схемы и создает возможность бесперебойного теплоснабжения потребителей. В аварийных условиях допускается частичное снижение подачи тепловой энергии. Например, согласно Нормам проектирования, перемычки рассчитывают на обеспечение 70 %-ной суммарной тепловой нагрузки (максимального часового расхода на отопление и вентиляцию и среднечасового на горячее водоснабжение).

В развивающихся районах города резервирующие перемычки предусматривают между смежными магистралями независимо от тепловой мощности, но в зависимости от очередности развития. Перемычки предусматривают также и между магистралями в тупиковых схемах при теплоснабжении района от нескольких источников теплоты (ТЭЦ, районных и квартальных котельных 4), что повышает надежность теплоснабжения. Кроме того, в летний период при работе одной или двух котельных на нормальном режиме можно отключать несколько котельных, работающих с минимальной нагрузкой. При этом наряду с повышением КПД котельных создаются условия для своевременного проведения профилактического и капитального ремонтов отдельных участков тепловой сети и собственно котельных. На крупных ответвлениях (см. рисунок) предусматриваются секционирующие камеры 5. Для предприятий, не допускающих перерыва в подаче тепловой энергии, предусматривают схемы тепловых сетей с двусторонним питанием, местные резервные источники или кольцевые схемы.


Кольцевая схема (рисунок) предусматривается в крупных городах. Для устройства таких тепловых сетей требуются большие капитальные вложения по сравнению с тупиковыми. Достоинство кольцевой схемы – наличие нескольких источников, благодаря чему повышается надежность теплоснабжения и требуется меньшая суммарная резервная мощность котельного оборудования. При увеличении стоимости кольцевой магистрали снижаются капитальные затраты на строительство источников тепловой энергии. Кольцевая магистраль 1 подключена к трем ТЭЦ, потребители 2 через центральные тепловые пункты 6 присоединены к кольцевой магистрали по тупиковой схеме. На крупных ответвлениях предусмотрены секционирующие камеры 5. Промышленные предприятия 7 также присоединены по тупиковой схеме.

Бесканальная прокладка теплопроводов по конструкции тепловой изоляции подразделяется на засыпную, сборную, сборно-литую и монолитную. Основной недостаток бесканальной прокладки – повышенная просадка и наружная коррозия теплопроводов, а также увеличенные теплопотери в случае нарушения гидроизоляции теплоизолирующего слоя. В значительной мере недостатки бесканальных прокладок тепловых сетей устраняются при использовании теплогидроизоляции на основе полимербетонных смесей.

Теплопроводы в каналах укладывают на подвижные или неподвижные опоры. Подвижные опоры служат для передачи собственного веса теплопроводов на несущие конструкции. Кроме того, они обеспечивают перемещение труб, происходящее вследствие изменения их длины при изменении их длинны при изменении температуры теплоносителя. Подвижные опоры бывают скользящие и катковые.

Скользящие опоры используют в тех случаях, когда основание под опоры может быть сделано достаточно прочным для восприятия больших горизонтальных нагрузок. В противном случае устанавливают катковые опоры, создающие меньшие горизонтальные нагрузки. Поэтому при прокладке трубопроводов больших диаметров в тоннелях, на каркасах или мачтах следует ставить катковые опоры.

Неподвижные опоры служат для распределения термических удлинений теплопровода между компенсаторами и для обеспечения равномерной работы последних. В камерах подземных каналов и при надземных прокладках неподвижные опоры выполняют в виде металлических конструкций, сваренных или соединенных на болтах с трубами. Эти конструкции заделывают в фундаменты, стены и перекрытия каналов.

Для восприятия температурных удлинений и разгрузки теплопроводов от температурных напряжений на теплосети устанавливают радиальные (гибкие и волнистые шарнирного типа) и осевые (сальниковые и линзовые) компенсаторы.

Гибкие компенсаторы П - и S - образные изготовляют из труб и отводов (гнутых, крутоизогнутых и сварных) для теплопроводов диаметром от 500 до 1000 мм. Такие компенсаторы устанавливают в непроходных каналах, когда невозможен осмотр проложенных теплопроводов, а также в зданиях при бесканальной прокладке. Допустимый радиус изгиба труб при изготовлении компенсаторов составляет 3,5…4,5 наружного диаметра трубы.

С целью увеличения компенсирующей способности гнутых компенсаторов и уменьшения компенсационных напряжений обычно их предварительно растягивают. Для этого компенсатор в холодном состоянии растягивается в основании петли, с тем чтобы при подаче горячего теплоносителя и соответствующем удлинении теплопровода плечи компенсатора оказались в положении, при котором напряжения будут минимальные.

Сальниковые компенсаторы имеют небольшие размеры, большую компенсирующую способность оказывать незначительное сопротивление протекающей жидкости. Их изготовляют односторонними и двусторонними для труб диаметром от 100 до 1000 мм. Сальниковые компенсаторы состоят из корпуса с фланцем на уширенной передней части. В корпус компенсатора вставлен подвижный стакан с фланцем для установки компенсатора на трубопроводе. Чтобы сальниковый компенсатор не пропускал теплоноситель между кольцами, в промежутке между корпусом и стаканом укладывают сальниковую набивку. Сальниковую набивку вжимают фланцевым вкладышем с помощью шпилек, ввинчиваемых в корпус компенсатора. Компенсаторы крепят к неподвижным опорам.

Камера для установки задвижек на тепловых сетях изображена на рисунке. При подземных прокладках теплосетей для обслуживания запорной арматуры устраивают подземные камеры 3 прямоугольной формы. В камерах прокладывают ответвления 1 и 2 сети к потребителям. Горячая вода в здание подается по теплопроводу, укладываемому с правой стороны канала. Подающий 7 и обратный 6 теплопроводы устанавливают на опоры 5 и покрывают изоляцией. Стены камер выкладывают из кирпича, блоков или панелей, перекрытия сборные – из железобетона в виде ребристых или плоских плит, дно камеры – из бетона. Вход в камеры через чугунные люки. Для спуска в камеру под люками в стене заделывают скобы или устанавливают металлические лестницы. Высота камеры должна быть не менее 1800 мм. Ширину выбирают с таки расчетом, чтобы расстояния между стенами и трубами были не менее 500 м.

Вопросы для самоконтроля:

1. Что называют тепловыми сетями?

2. Как классифицируются тепловые сети?

3. В чем преимущества и недостатки кольцевой и тупиковой сетей?

4. Что называют теплопроводом?

5. Назовите способы прокладывания тепловых сетей.

6. Назовите назначение и виды изоляции теплопроводов.

7. Назовите трубы, из которых монтируют тепловые сети.

8. Назовите назначение компенсаторов.

О значении теплового пункта в общей системе теплоснабжения много говорить не надо. Тепловые схемы тепловых узлов задействованы как в сети, и так и в системе внутреннего потребления.

Понятие о тепловом пункте

Экономичность использования и уровня подачи тепла к потребителю напрямую зависит от правильности функционирования оборудования.

По сути, тепловой пункт представляет собой юридическую границу, что само по себе предполагает обустройство его набором контрольно-измерительной техники. Благодаря такой внутренней начинке определение взаимной ответственности сторон становится более доступным. Но прежде чем разобраться с этим, необходимо понять, как функционируют тепловые схемы тепловых узлов и для чего их читать.

Как определить схему теплового узла

При определении схемы и оборудования теплового пункта опираются на технические характеристики местной системы теплопотребления, внешней ветки сети, режима работы систем и их источников.

В этом разделе предстоит ознакомиться с графиками расхода теплоносителя - тепловой схемой теплового узла.

Подробное рассмотрение позволит понять, как производится подключение к общему коллектору, давление внутри сети и относительно теплоносителя, показатели которых напрямую зависят от расхода тепла.

Важно! В случае присоединения теплового узла не к коллектору, а к тепловой сети расход теплоносителя одной ветки неизбежно отражается на расходе другой.

Разбор схемы в деталях

На рисунке изображены два типа подключений: а - в случае подключения потребителей непосредственно к коллектору; б - при присоединении к ветке тепловой сети.

Чертеж отражает графические изменения расходов теплоносителя при наступлении таких обстоятельств:

А - при подключении систем отопления и к коллекторам теплоисточника по отдельности.

Б - при врезке тех же систем к наружной Интересно, что присоединение в таком случае отличается высокими показателями потери давления в системе.

Рассматривая первый вариант, следует отметить, что показатели суммарного расхода теплоносителя возрастают синхронно с расходом на снабжение горячей водой (в режиме І, ІІ, ІІІ), в то время как во втором, хоть рост расхода теплового узла и имеет место быть, вместе с ним показатели расхода на отопление автоматически понижаются.

Исходя из описанных особенностей тепловой схемы теплового узла, можно сделать вывод, что в результате суммарного расхода теплоносителя, рассмотренного в первом варианте, при его применении на практике составляет около 80 % расхода при применении второго прототипа схемы.

Место схемы в проектировании

Проектируя схему теплового узла отопления в жилом микрорайоне, при условии, что система теплоснабжения закрытая, уделите особое внимание выбору схемы соединения подогревателей горячего водоснабжения с сетью. Выбранный проект будет определять расчетные расходы теплоносителей, функции и режимы регулирования, прочее.

Выбор схемы теплового узла отопления в первую очередь определяется установленным тепловым режимом сети. Если сеть функционирует по отопительному графику, то подбор чертежа производится исходя из технико-экономического расчета. В таком случае параллельную и смешанную схемы тепловых узлов отопления сравнивают.

Особенности оборудования теплового пункта

Чтобы сеть теплоснабжения дома исправно функционировала, на пункты отопления дополнительно устанавливают:

  • задвижки и вентили;
  • специальные фильтры, улавливающие частицы грязи;
  • контрольные и статистические приборы: термостаты, манометры, расходомеры;
  • вспомогательные или резервные насосы.

Условные обозначения схем и как их читать

На рисунке выше изображена принципиальная схема теплового узла с подробным описанием всех составляющих элементов.

Номер элемента

Условное обозначение

Трехходовой кран

Задвижка

Кран пробковый

Грязевик

Клапан обратный

Шайба дроссельная

V-образный штуцер для термометра

Термометр

Манометр

Элеватор

Тепломер

Регулятор расхода воды

Регулятор подпара

Вентили в системе

Линия обводки

Обозначения на схемах тепловых узлов помогают разобраться в функционировании узла путем изучения схемы.

Инженеры, ориентируясь на чертежи, могут предположить, где возникает поломка в сети при наблюдающихся неполадках, и быстро ее устранить. Схемы тепловых узлов пригодятся и в том случае, если вы занимаетесь проектированием нового дома. Такие расчеты обязательно входят в пакет проектной документации, ведь без них не выполнить монтаж системы и разводку по всему дому.

Информация о том, что такое чертеж тепловой системы и как его принимать на практике, пригодится каждому, кто хотя бы раз в своей жизни сталкивался с отопительными или водонагревающими приборами.

Надеемся, приведенный в статье материал поможет разобраться с основными понятиями, понять, как определить на схеме основные узлы и точки обозначения принципиальных элементов.

Для транспортирования тепла от источника тепло­снабжения до потребителей сооружаются наружные тепловые сети. Они являются одними из наиболее трудоемких и дорого­стоящих элементов системы теплоснабжения. Сети состоят из стальных труб, соединенных сваркой, тепловой изоляции, запорной арматуры, компенсаторов (тепловых удлинителей), дренажных и воздухоспускных устройств, подвижных и неподвижных опор. В комплекс строительных конструкций входят камеры об­служивания и система подземных каналов.

Тепловые сети различают по числу теплопроводов, передающих теплоноситель в одном направлении (одно-, двух-, трех- и четырехтрубные). Однотрубная магистраль применяется для подачи воды без ее возврата в котельную или ТЭЦ и пара без возврата конденсата. Такое решение возможно при использовании воды из самой тепловой сети на цели горячего водоснабже­ния, технологические нужды или дальнее теплоснабжение от ТЭЦ, а также при использовании термальных вод.

В теплоснабжении малых населенных мест применяется двухтрубная открытая система теплоснабжения, когда тепловая сеть состоит из теплопроводов подающего и обратного. Часть воды, циркулирующей в открытой сети, разбирается абонентами для горячего водоснабжения.

В водяных и паровых двухтрубных закрытых системах вода, циркулирующая в тепловых сетях, или пар используется только как теплоноситель. Соединение двухтрубной системы теплоснаб­жения на нужды отопления и вентиляции с однотрубной системой горячего водоснабжения приводит к трехтрубной. Если си­стема горячего водоснабжения имеет две трубы, вторая труба является вспомогательной для создания циркуляции, уст­раняющей остывание воды при малом водоразборе. Тогда вся система теплоснабжения вместе с двухтрубной системой отоп­ления называется четырехтрубной. Трехтрубные или четырехтрубные могут быть применены в тех случаях, где рациональнее выделить горячее водоснабжение на третью трубу. В системах горячего водоснабжения жилых зданий, больниц, гостиниц и т. п. желательно предусматривать циркуляцию воды.

Схема тепловой сети определяется размещением ТЭЦ или поселковой котельной среди теплопотребителей. Сети выполняются радиальными тупиковыми.

Для поселков сельскохозяйственных предприятий, застраи­ваемых двух- и трехэтажными домами, расположенными груп­пами (рис. 1), образующими параллельные фронты застройки или замкнутые контуры, могут применяться кольцевые одно­трубные тепловые сети. Кольцевые системы могут устраиваться

Рис. 1. Конфигурация тепловых сетей: А - радиаль­ная сеть; Б - радиальная сеть с перемычками; 1 - котельная; 2 - тепловая сеть; 3 - перемычка



как от групповых котельных, так и от двухтрубной магистрали отопительной котельной.

Однотрубные кольцевые системы имеют те же общие принципы действия, что и однотрубные системы внутреннего отопле­ния. Теплоноситель в сети последовательно проходит каждое присоединенное здание и в последних приближается к температуре обратной воды. Регулирование теплоотдачи в отапливаемых зданиях достигается установкой приборов с различными поверхностями нагрева.

Однотрубные сети прокладываются параллельно фронту за­стройки присоединяемых.зданий на расстоянии от 3 до 5 м от линии застройки. Количество присоединяемых зданий к тепло­вой сети определяется из условия непревышения допустимого давления для нагревательных приборов.

Трубопроводы тепловых сетей прокладываются в непроход­ных каналах и бесканально (подземная прокладка), а также на отдельно стоящих опорах (наземная прокладка). Последняя применяется на территории производственных площадок, ТЭЦ или при прохождении через незастроенные территории. Приме­нение ее ограничивается архитектурными соображениями.

Основным типом подземной прокладки тепловых сетей явля­ется прокладка в непроходных каналах.

На рис. 2 показана конструкция непроходного канала с бетонными стенками. При такой конструкции основ­ные затраты (50-58%) приходятся на строительную часть, тепловую изоляцию труб, т. е. на вспомогательные сооружения прокладки. Каналы прокладываются на глубине 0,7-1 м от по­верхности земли до верха плиты перекрытия. Во избежание дре­нажных устройств тепловую сеть необходимо стремиться укла­дывать выше уровня грунтовых вод. Если этого избежать невоз­можно, применяются, гидроизоляция канала из двух слоев рубе­роида на клебемассе или прокладка с наименьшим заглублением (до 0,5 м). Однако гидроизоляция каналов тепло­вых сетей не обеспечивает надежной защиты их от грунтовых вод, так как в практических условиях трудно вы­полнить такую изоляцию доброкачест­венно. Поэтому в настоящее время при укладке тепловых сетей ниже уровня грунтовых вод устраивают сопутствую­щий пластовый дренаж.

Дренажные трубы песчано-гравийным (щебеночным) фильтром про­кладывают вдоль канала, обычно со стороны наибольшего при­тока грунтовых вод. Под канал и вдоль боковых его стен укладывают песчаный грунт, который способствует отводу грунтовых вод. В отдельных случаях дренажные трубы

размещают под каналом (рис.2), а смотровые колодцы уст­раивают внутри компенсаторных ниш. Устройство дренажа под каналом обходится значительно дешевле, особенно в скальных и плывунных грунтах, так как в этом случае не требуется дополнительного уширения траншей.

Применение пористых бетонных труб удешев­ляет и ускоряет сооружение дренажа, так как уменьшаются тру­доемкие работы по устройству фильтров.

При сооружении канала теплотрассы в мелкозернистых пес­чаных и супесчаных грунтах может быть устроен песчано-гравийный или песчаный фильтр слоем 150 мм под каналом.

Заглубление теплопроводов определяется, как правило, про­филем земли, отметками вводов, протяженностью сети и про­кладкой других подземных коммуникаций. Водопровод и газопровод обычно прокладываются на уровне теплопроводов.

В местах пересечений допускается устройство местных изгибов водопровода или газопровода с прокладкой их над или под теп­лопроводами.

Для существенного снижения стоимости прокладки сетей применяют бесканальную прокладку труб в теплоизоляционных оболочках. В этом случае тепловая изоляция труб непосредст­венно соприкасается с грунтом. Материал для устройства тепло­изоляционной оболочки должен быть гидрофобным, прочным, дешевым и нейтральным, по отношению к металлу труб. Жела­тельно, чтобы он обладал диэлектрическими свойствами. С этой целью осваиваются конструкции бесканальной прокладки труб в штучных изделиях из ячеистой керамики и в оболочках из поликерамики.

В местах ответвлений теплотрассы к потребителям устраи­ваются кирпичные подземные камеры-колодцы с запорной и другой арматурой. Высота камер принимается не менее 1,8 м. Вход в камеру выполняется через чугунный люк глубина принимается 0,4-0,5 м. Для камер, размещаемых внутри жилой застройки, допускается возвышение их над поверхностью земли на высоту не более 400 мм.

Для компенсации тепловых удлинений трубопроводов от из­менения температуры теплоносителя на прямых участках теп­лотрассы применяются гибкие П-образные компенсаторы, а на ломаных участках используются углы поворота трассы (есте­ственная компенсация). Компенсаторы размещаются в специ­альных кирпичных нишах, предусматриваемых по длине тепло­трассы. Расстояние между компенсаторами устанавливается расчетом или принимается по номограммам в зависимости от температуры теплоносителя.

Трубы в каналах укладываются на опорных бетонных подушках. Перемещение труб при изменении их длины обеспечивает заложение камер от поверхности земли до верха покрытия.

Расстояние между опорными подушками зависит от диаметров укладываемых труб. Для труб диаметром не более 250 мм рас­стояния принимаются 2-8 м.