Правило ленца. Конспект лекции " явление электромагнитной индукции" Правило ленца закон электромагнитной индукции конспект

Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.
Магнитным потоком Φ через площадь S контура называют величину

Φ = B · S · cos α,

Где B – модуль вектора магнитной индукции, α – угол между вектором и нормалью к плоскости контура (рис. 4.20.1).

Рисунок 4.20.1.
Магнитный поток через замкнутый контур. Направление нормали и выбранное положительное направление обхода контура связаны правилом правого буравчика.
Определение магнитного потока нетрудно обобщить на случай неоднородного магнитного поля и неплоского контура. Единица магнитного потока в системе СИ называется вебером (Вб). Магнитный поток, равный 1 Вб, создается магнитным полем с индукцией 1 Тл, пронизывающим по направлению нормали плоский контур площадью 1 м2:

1 Вб = 1 Тл · 1 м2.

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции Eинд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение называется правилом Ленца (1833 г.).
Рис. 4.20.2 иллюстрирует правило Ленца на примере неподвижного проводящего контура, который находится в однородном магнитном поле, модуль индукции которого увеличивается во времени.

Рисунок 4.20.2.
Иллюстрация правила Ленца. В этом примере а инд < 0. Индукционный ток Iинд течет навстречу выбранному положительному направлению обхода контура.
Правило Ленца отражает тот экспериментальный факт, что инд и всегда имеют противоположные знаки (знак «минус» в формуле Фарадея). Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам.
1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
Рассмотрим в качестве примера возникновение ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле перпендикулярное плоскости контура. Пусть одна из сторон контура длиной l скользит со скоростью по двум другим сторонам (рис. 4.20.3).

Рисунок 4.20.3.
Возникновение ЭДС индукции в движущемся проводнике. Указана составляющая силы Лоренца, действующей на свободный электрон.
На свободные заряды на этом участке контура действует сила Лоренца. Одна из составляющих этой силы, связанная с переносной скоростью зарядов, направлена вдоль проводника. Эта составляющая указана на рис. 4.20.3. Она играет роль сторонней силы. Ее модуль равен

Работа силы FЛ на пути l равна

A = FЛ · l = eυBl.

По определению ЭДС

В других неподвижных частях контура сторонняя сила равна нулю. Соотношению для инд можно придать привычный вид. За времы Δt площадь контура изменяется на ΔS = lυΔt. Изменение магнитного потока за это время равно ΔΦ = BlυΔt. Следовательно,

Для того, чтобы установить знак в формуле, связывающей инд и нужно выбрать согласованные между собой по правилу правого буравчика направление нормали и положительное направление обхода контура как это сделано на рис. 4.20.1 и 4.20.2. Если это сделать, то легко прийти к формуле Фарадея.
Если сопротивление всей цепи равно R, то по ней будет протекать индукционный ток, равный Iинд = инд/R. За время Δt на сопротивлении R выделится джоулево тепло (см. § 4.11)

Возникает вопрос: откуда берется эта энергия, ведь сила Лоренца работы не совершает! Этот парадокс возник потому, что мы учли работу только одной составляющей силы Лоренца. При протекании индукционного тока по проводнику, находящемуся в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, связанная с относительной скоростью движения зарядов вдоль проводника. Эта составляющая ответственна за появление силы Ампера. Для случая, изображенного на рис. 4.20.3, модуль силы Ампера равен FA = IBl. Сила Ампера направлена навстречу движения проводника; поэтому она совершает отрицательную механическую работу. За время Δt эта работа Aмех равна

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю. Джоулево тепло в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.
2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не является потенциальным. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом (1861 г.).
Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея. Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.

Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока .

Вихревые токи, или токи Фуко

Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко .

Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.

Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.

Электромагнитное поле

Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.

Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.

Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем . Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.

Классическая электродинамика - одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.

Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно - электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.

Электромагнитная индукция в схемах и таблицах

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ. ПРАВИЛО ЛЕНЦА

В 1831 году английский ученый-физик М.Фарадей в своих открыл явление электромагнитной индукции. Затем изучением этого явления занимались русские ученый Э.Х. Ленц и Б.С.Якоби.

В настоящее время, в основе многих устройств лежит явление электромагнитной индукции, например в двигателе или , в трансформаторах, радиоприемниках, и многих других устройствах.

Электромагнитная индукция - это явление возникновения тока в замкнутом проводнике, при прохождении через него магнитного потока.

То есть, благодаря этому явлению мы можем преобразовывать механическую энергию в электрическую. До открытия этого явления люди не знали о методах получения , кроме гальваники.

Когда проводник оказывается под действием магнитного поля, в нем возникает ЭДС, которую количественно можно выразить через закон электромагнитной индукции.

Закон электромагнитной индукции

Электродвижущая сила, индуцируемая в проводящем контуре, равна скорости изменения магнитного потока, сцепляющегося с этим контуром.

В катушке, которая имеет несколько витков, общая ЭДС зависит от количества витков n:

ЭДС, возбуждаемая в контуре, создает ток. Наиболее простым примером появления тока в проводнике является катушка, через которую проходит . Направление индуцируемого тока можно определить с помощью правила Ленца.

Правило Ленца

Ток, индуцируемый при изменении магнитного поля, проходящего через контур, своим магнитным полем препятствует этому изменению.

В том случае, когда мы вводим магнит в катушку, магнитный поток в контуре увеличивается, а значит магнитное поле, создаваемое индуцируемым током, по правилу Ленца, направлено против увеличения поля магнита. Чтобы определить направление тока, нужно посмотреть на магнит со стороны северного полюса. С этой позиции мы будем вкручивать буравчик по направлению магнитного поля тока, то есть навстречу северному полюсу. Ток будет двигаться по направлению вращения буравчика, то есть по часовой стрелке.

В том случае, когда мы выводим магнит из катушки, магнитный поток в контуре уменьшается, а значит магнитное поле, создаваемое индуцируемым током, направлено против уменьшения поля магнита. Чтобы определить направление тока, нужно выкручивать буравчик, направление вращения буравчика укажет направление тока в проводнике – против часовой стрелки.

Электрический генератор - это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в .

Классификация электромеханических генераторов

По типу первичного двигателя :

    С включением обмоток звездой

    С включением обмоток треугольником

По способу возбуждения

    С возбуждением постоянными магнитами

    С внешним возбуждением

    С самовозбуждением

    С последовательным возбуждением

    С параллельным возбуждением

    Со смешанным возбуждением

По принципу работы генераторы могут быть синхронными или асинхронными.

Асинхронные генераторы конструктивно просто устроены и недороги в изготовлении, более устойчивы к токам короткого замыкания и перегрузок. Асинхронный электрогенератор идеально подходит для питания активной нагрузки: ламп накаливания, электронагревателей, электроники, электрических конфорок и т. д. Но даже кратковременная перегрузка для них недопустима, поэтому при подключении электродвигателей, не электронного типа сварочного аппарата, электроинструмента и других индуктивных нагрузок - запас по мощности должен быть минимум трехкратным, а лучше четырехкратным.

Синхронный генератор прекрасно подойдет для индуктивных потребителей с высокими значениями пусковых токов. Они способны в течение одной секунды выдерживать пятикратную токовую перегрузку.

Принцип действия генератора тока

Генератор работает на основе закона электромагнитной индукции Фарадея - электродвижущая сила (ЭДС) индуцируется в прямоугольном контуре (проволочной рамке), вращающемся в однородном магнитном поле.

ЭДС также возникает в неподвижной прямоугольной рамке, если в ней вращать магнит.

Простейший генератор представляет собой прямоугольную рамку, размещенную между 2 магнитами с разными полюсами. Для того что бы снять с вращающейся рамки напряжение используются токосъемные кольца.

Автомобильный генератор состоит из корпуса и двух крышек с отверстиями для вентиляции. Ротор вращается в 2 подшипниках и приводится в движение при помощи шкива. По своей сути ротор является электромагнитом, состоящим из одной обмотки. Ток на нее подается при помощи двух медных колец и графитовых щеток, которые соединены с электронным реле-регулятором. Он отвечает за то, что бы выдаваемое напряжение генератором всегда было в допустимых пределах 12 Вольт с допустимыми отклонениями и не зависело от частоты вращения шкива. Реле-регулятор может быть как встроено в корпус генератора, так и находится за его пределами.

Статор состоит из трех медных обмоток, соединенных между собой в треугольник. К точкам их соединения подключен выпрямительный мост из 6 полупроводниковых диодов, которые преобразуют напряжение из переменного в постоянное.

Бензиновый электрогенератор состоит из двигателя и приводящего им в движение напрямую генератора тока, который может быть как синхронного, так и асинхронного типа.

Двигатель оснащен системами: запуска, впрыска топлива, охлаждения, смазки, стабилизации оборотов. Вибрацию и шум поглощают глушитель, виброгасители и амортизаторы.

Переменный электрический ток

Электромагнитные колебания, как и механические, бывают двух типов: свободные и вынужденные.

Свободные электромагнитные колебания, всегда колебания затухающие. Поэтому на практике они почти не используются. В то время как вынужденные колебания используются везде и повсеместно. Ежедневно мы с вами можем наблюдать эти колебания.

Все наши квартиры освещены с помощью переменного тока. Переменный ток есть не что иное, как вынужденные электромагнитные колебания. Сила тока и напряжение будут меняться с течением времени согласно гармоническому закону. Колебания, например, напряжения можно обнаружить, если подать напряжение из розетки, на осциллограф.

На экране осциллографа появится синусоида. Можно вычислить частоту переменного тока. Она будет равняться частоте электромагнитных колебаний. Стандартная частота для промышленного переменного тока принята равной 50 Гц. То есть за 1 секунду направление тока в розетке меняется 50 раз. В промышленных сетях США используется частота 60 Гц.

Изменение напряжения на концах цепи будет вызывать за собой изменение силы тока в цепи колебательного контура. Следует всё же понимать, что изменение электрического поля во всей цепи не происходит мгновенно.

Но так как это время, значительно меньше, чем период колебания напряжения на концах цепи, то обычно считают, что электрическое поле в цепи сразу же меняется, как меняется напряжение на концах цепи.

Переменное напряжение в розетке создается генераторами на электростанциях. Простейшим генератором можно рассматривать проволочную рамку, которая вращается в однородном магнитном поле.

Магнитный поток, пронизывающий контур, будет постоянно меняться и будет пропорционален косинусу угла между вектором магнитной индукции и нормалью к рамке. Если рамка вращается равномерно, то угол будет пропорционален времени.

Следовательно, магнитный поток будет изменяться по гармоническому закону:

Ф = B*S*cos(ω*t)

Скорость изменения магнитного потока , взятая с обратным знаком, согласно закону ЭМИ, будет равняться ЭДС индукции.

Ei = -Ф’ = Em*sin(ω*t).

Если к рамке подключить колебательный контур, то угловая скорость вращения рамки определит частот колебаний напряжения на различных участках цепи и силы тока. В дальнейшем мы будем рассматривать только вынужденные электромагнитные колебания .

Они описываются следующими формулами:

u = Um*sin(ω*t),

u = Um*cos(ω*t)

Здесь Um – амплитуда колебаний напряжения. Напряжение и сила тока меняются с одинаковой частой ω. Но колебания напряжения не всегда будут совпадать с колебаниями силы тока, поэтому лучше использовать более общую формулу:

I = Im*sin(ω*t +φ), где Im - амплитуда колебаний силы тока, а φ – сдвиг фаз между колебаниями силы тока и напряжения.

Параметры переменного тока и напряжения

Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

Период T - время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частота f - величина, обратная периоду, равная количеству периодов за одну секунду.
Один период в секунду это один герц (1 Hz)

Циклическая частота ω - угловая частота, равная количеству периодов за 2π секунд.

ω = 2πf = 2π/T

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза ψ - величина угла от нуля (ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение - величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.

i = i(t); u = u(t)

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени. Например, синусоидальный ток или напряжение можно выразить функцией:

i = I amp sin(ωt); u = U amp sin(ωt)

С учётом начальной фазы:

i = I amp sin(ωt + ψ); u = U amp sin(ωt + ψ)

Здесь I amp и U amp - амплитудные значения тока и напряжения.

Амплитудное значение - максимальное по модулю мгновенное значение за период.

I amp = max|i(t)|; U amp = max|u(t)|

Может быть положительным и отрицательным в зависимости от положения относительно нуля. Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) - максимальное отклонение от нулевого значения.Турбогенератор . Устройство и работа

Устройство и работа

Дизель-генератор. Устройство и работа

Устройство и работа

Задачи для самостоятельного решения

Закон ЭМ индукции Фарадея .

1. Магнитный поток внутри катушки с числом витков равным 400, за 0,2 с изменился от 0,1 Вб до 0,9 Вб. Определить ЭДС, индуцируемую в катушке.

2. Определить магнитный поток, проходящий через прямоугольную площадку со сторонами 20х40 см, если она помещена в однородное магнитное поле с индукцией в 5 Тл под углом 60° к линиям магнитной индукции поля.

3. Сколько витков должна иметь катушка, чтобы при изменении магнитного потока внутри нее от 0,024 до 0,056 Вб за 0,32 с в ней создавалась средняя э.д.с. 10 В?

ЭДС индукции в движущихся проводниках .

1. Определить ЭДС индукции на концах крыльев самолета Ан-2, имеющих длину 12,4 м, если скорость самолёта при горизонтальном полёте 180 км/ч, а вертикальная составляющая вектора индукции магнитного поля Земли 0,5·10-4 Тл.

2. Найти ЭДС индукции на крыльях самолета Ту-204, имеющих длину 42 м, летящего горизонтально со скоростью 850 км/ч, если вертикальная составляющая вектора индукции магнитного поля Земли 5·10-5 Тл.

ЭДС самоиндукции

1. В катушке возникает магнитный поток 0,015 Вб, когда по ее виткам проходит ток 5,0 А. Сколько витков содержит катушка, если ее индуктивность 60 мГ?

2. Во сколько раз изменится индуктивность катушки без сердечника, если число витков в ней увеличить в два раза?

3. Какая э.д.с. самоиндукции возникнет в катушке с индуктивностью 68 мГн, если ток 3,8 А исчезнет в ней за 0,012 с?

4. Определить индуктивность катушки, если при ослаблении в ней тока на 2,8 А за 62 мс в катушке появляется средняя э.д.с. самоиндукции 14 В.

5. За сколько времени в катушке с индуктивностью 240 мГ происходит нарастание тока от нуля до 11,4 А, если при этом возникает средняя э.д.с. самоиндукции 30 В?

Энергия электромагнитного поля

1. По катушке с индуктивностью 0,6 Гн течет ток силой 20 А. Какова энергия магнитного поля катушки? Как изменится эта энергия при возпастании силы тока в 2 раза? в 3 раза?

2. Какой силы ток нужно пропускать по обмотке дросселя с индуктивностью 0,5 Гн, чтобы энергия поля оказалась равной 100 Дж?

3. Энергия магнитного поля какой катушки больше и во сколько раз, если первая имеет характеристики: I1=10A, L1=20 Гн, вторая: I2=20A, L2=10 Гн?

4. Определить энергию магнитного поля катушки, в которой при токе 7,5 А магнитный поток равен 2,3·10 -3 Вб. Число витков в катушке 120.

5. Определить индуктивность катушки, если при токе 6,2 А ее магнитное поле обладает энергией 0,32 Дж.

6. Магнитное поле катушки с индуктивностью 95 мГн обладает энергией 0,19 Дж. Чему равна сила тока в катушке?

Цели урока:

Учебная:

изучить закон электромагнитной индукции.

Развивающая:

1) формирование информационных компетенций;

2) развитие навыков самостоятельной работы с учебником;

3) совершенствование интеллектуальных способностей и мыслительных умений учащихся.

Воспитательная:

формирование коммуникативных качеств личностей.

Оборудование:

  1. Дидактические карточки с вопросами для каждой группы.
  2. Тестовые задания для каждой группы.
  3. Приборы для демонстрации: гальванометр, катушка, магнит.

Краткий конспект урока

  1. Организационный момент

Задача : создание благоприятного психологического настроя.

  1. Актуализация опорных знаний

Задача : повторить и углубить знания, необходимые для изучения нового материала.

Приём обучения – эвристическая беседа;

Формы организации познавательной деятельности (ФОПД) – фронтальная;

Метод обучения – репродуктивный.

Повторение основных понятий по теме «Электромагнитная индукция, правило Ленца, магнитный поток».

В 1821 году великий английский учёный записал в своём дневнике: «Превратить магнетизм в электричество». Через 10 лет это задача была и решена.

Как называлось открытое Фарадеем физическое явление?

Работать будем в группах по 2-3 человека, каждая из которых получает задание.

На обдумывание по 1-2 минуты, после чего представители групп отчитываются по повторению.

Задача : повторить основные понятия.

  • ФОПД – самостоятельная работа в группах.
  • Метод обучения – исследовательский, индуктивный

Карточка №1:

Когда и кем было открыто явление электромагнитной индукции?

В чем заключается явление электромагнитной индукции?

Карточка №2:

Опыт Фарадея: установка, демонстрация.

При каком условии в замкнутом проводнике возникает ток?

Карточка №3:

Правило Ленца.

Карточка №4:

Какая физическая величина характеризует магнитное поле в каждой точке пространства?

Какая физическая величина характеризует распределение магнитного поля по поверхности, ограниченной замкнутым контуром?

Формула, единица измерения.

Карточка № 5-6:

Определить направление индукционного тока в замкнутом контуре.

Отчёты групп.

Задачи:

  • развивать речевую культуру, умение обобщать материал, выделять главное.
  • воспитывать нравственные качества личности, связанные со взаимоотношениями в классном коллективе.

Метод обучения – индуктивный

Приём обучений – эвристическая беседа

  1. Изучение нового материала

Обобщить выводы, сделанные группами .

План:

  1. От чего зависит сила индукционного тока в замкнутом проводнике?
  2. Что называют ЭДС индукции?
  3. Формулировка закона электромагнитной индукции.
  4. Почему закон формулируется для ЭДС, а не для силы тока?
  5. Что означает знак (-) в законе?
  6. Как записать закон электромагнитной индукции, используя понятие производной?

Обобщённый план изучения явления:

  • Внешние признаки явления;
  • Условие его протекания;
  • Экспериментальное воспроизведение явления;
  • Механизм протекания явления;
  • Количественные характеристики явления;
  • Его объяснение на основе теорий;
  • Практическое применение явлений;
  • Влияние явления на человека и природу.

Для повторения и изучения явления электромагнитной индукции мы использовали метод научного познания. Его основы заложил в середине 16 века Галилео Галилей.

Схема метода :

  • накопление фактов;
  • построение теорий;
  • опытное доказательство гипотезы;
  • практическое применение теорий.

Метод научного познания позволяет объективно отражать действительность не только в физике, но и в других областях науки.

  1. Решение задач.

На ЕГЭ:

Графические задачи (часть А)

Расчетные задачи (часть В, С)

Задача: получить информацию о степени усвоения материала.

ФОПД – индивидуальная

Прием обучения – упражнения

Задача:

На рисунке 1-3 изображены замкнутые проводящие рамки, помещенные в магнитное поле, линии магнитной индукции которого направлены к нам, перпендикулярно плоскости чертежа. Возникает ли индукционный ток в рамке?

  1. Рефлексия:

Я научился …

Я узнал …

Я понял …

  1. Домашнее задание (дифференцированно):

1.Сборник задач Г.Н. Степановой № 1128, 1129

Учебник по физике 11 класс (Мякишев Г.Я.) §11.

2.Либо составить 2 задачи, аналогичные частям А и Б, либо найти в пособиях, решить и объяснить. Слайд 2

Карточка №1: Когда и кем было открыто явление электромагнитной индукции? В чем заключается явление электромагнитной индукции?

Карточка №2: Опыт Фарадея: установка, демонстрация. При каком условии в замкнутом проводнике возникает ток?

Карточка №3: Правило Ленца

Карточка №4: Какая физическая величина характеризует магнитное поле в каждой точке пространства? Какая физическая величина характеризует распределение магнитного поля по поверхности, ограниченной замкнутым контуром? Формула, единица измерения.

Карточка № 5-6: Определить направление индукционного тока в замкнутом контуре

План: От чего зависит сила индукционного тока в замкнутом проводнике? Что называют ЭДС индукции? Формулировка закона электромагнитной индукции. Почему закон формулируется для ЭДС, а не для силы тока? Что означает знак (-) в законе? Как записать закон электромагнитной индукции, используя понятие производной?

Обобщённый план изучения явления: Внешние признаки явления; Условие его протекания; Экспериментальное воспроизведение явления; Механизм протекания явления; Количественные характеристики явления; Его объяснение на основе теорий; Практическое применение явлений; Влияние явления на человека и природу.

Схема метода: накопление фактов построение теорий опытное доказательство гипотезы практическое применение теорий

Задача: На рисунке 1-3 изображены замкнутые проводящие рамки, помещенные в магнитное поле, линии магнитной индукции которого направлены к нам, перпендикулярно плоскости чертежа. Возникает ли индукционный ток в рамке? 1) 2) 3)

Рефлексия: Я научился… Я узнал… Я понял…


Явление электромагнитной индукции

1. Опыты Фарадея. Основной закон электромагнитной

индукции.

1. Опыты Фарадея. Основной закон электромагнитной индукции.

В 1831 году М. Фарадей многочисленными опытами установил, что в замкнутом проводящем контуре при изменении магнитного потока через поверхность, ограниченную данным контуром, возникает электрический ток.

Электромагнитная индукция (ЭМИ) – явление возникновения электрического тока в замкнутом проводящем контуре при изменении магнитного потока через поверхность, ограниченную данным контуром.

Появление электрического тока (называемого индукционным током ) в замкнутом проводящем контуре при изменении магнитного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил неэлектростатического происхождения или о возникновении ЭДС индукции .

Величина индукционного тока определяется скоростью изменения магнитного потока Ф , то есть значением , и не зависит от способа изменения магнитного потока Ф . При изменении знака меняется также направление индукционного тока.

Общее правило, по которому можно определить направление индукционного тока и которое является следствием закона сохранения и превращения энергии, было сформулировано Э.Х. Ленцем.

Правило Ленца : индукционный ток в замкнутом проводящем контуре всегда имеет такое направление, что создаваемое им магнитное поле препятствует изменению внешнего магнитного потока, вызвавшего этот индукционный ток. Или короче: индукционный ток всегда направлен так, чтобы противодействовать вызвавшей его причине.

Индукционный ток, как и всякий электрический ток, может течь в цепи только при наличии в ней электродвижущей силы. Фарадей установил, что величина ЭДС индукции прямо пропорциональна скорости изменения магнитного потока.

Основной закон ЭМИ Фарадея : ЭДС индукции в проводящем контуре прямо пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак минус служит математическим выражением правила Ленца, то есть указывает на то, что электродвижущая сила противодействует происходящему изменению магнитного потока.

Если контур, в котором индуцируется ЭДС, состоит из N одинаковых витков, то ЭДС такого контура будет равна сумме ЭДС индукции в каждом из витков в отдельности:

Механизмы возникновения ЭДС индукции :

– действие силы Лоренца на заряды в движущемся проводнике;

– действие вихревого электрического поля на заряды в проводнике.

ЭДС индукции, возникающая в линейном проводнике, движущемся в магнитном поле:


Индукционные токи возникают не только в линейных проводниках, но и в массивных сплошных проводниках. Эти токи оказываются замкнутыми внутри проводника и поэтому называются вихревыми токами или токами Фуко .

Вихревые токи вследствие малого сопротивления сплошного проводника могут достигать очень большой силы. Тепловое действие их используется в индукционных печах для нагрева при закалке деталей. Tоки Фуко подчиняются правилу Ленца, поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием вихревых токов с магнитным полем. Этим пользуются для успокоения подвижных частей гальванометров и других приборов. Во многих случаях токи Фуко бывают нежелательными, и для борьбы с ними приходится принимать специальные меры (например, сердечники трансформаторов набираются из тонких пластин).

2. Самоиндукция. Взаимная индукция.

Явление самоиндукции – это частный случай электромагнитной индукции. Данное явление состоит в возникновении ЭДС индукции в проводнике вследствие изменения магнитного потока, обусловленного электрическим током в этом же проводнике.

Самоиндукция – явление возникновения ЭДС индукции в проводнике при изменении в нём силы тока.

Электрический ток в контуре создаёт вокруг себя магнитное поле, индукция В которого, по закону Био-Савара-Лапласа при постоянной магнитной проницаемости, неизменной форме и ориентации контура в пространстве, пропорциональна силе тока I :

В ~ I .

Магнитный поток Ф через контур пропорционален по определению индукции В : Ф ~ В .

Поэтому магнитный поток через контур пропорционален силе тока в контуре:

Коэффициент пропорциональности L называется индуктивностью контура . Индуктивность зависит от размеров и формы проводника, магнитной проницаемости той среды, в которой он находится. В системе СИ:

ЭДС самоиндукции , возникающая в контуре с индуктивностью L , по закону ЭМИ равна:

ЭДС самоиндукции прямо пропорциональна индуктивности и скорости изменения силы тока в контуре. Знак минус выражает правило Ленца: при возрастании силы тока ЭДС самоиндукции направлена навстречу ему, а при убывании – поддерживает ток в том же направлении.

Явление самоиндукции проявляется при всяком изменении силы тока и поэтому играет очень важную роль в цепях переменного тока и в процессах электромагнитных колебаний.

Явление самоиндукции можно наблюдать, собрав следующую электрическую цепь.

При включении источника тока лампа Л 1 вспыхивает мгновенно, а лампа Л 2 – через некоторый промежуток времени.

При отключении источника тока обе лампы Л 1 и Л 2 гаснут через некоторый промежуток времени.

Токи самоиндукции, возникающие в цепи постоянного тока в моменты замыкания и размыкания цепи, называются экстратоками замыкания и размыкания .

Ток при замыкании цепи меняется по закону:

а при размыкании цепи – по закону:

где R – сопротивление цепи, – установившийся ток.

При отключении источника ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки. Энергия магнитного поля равна работе, которая затрачивается током на создание этого поля:

Следовательно, энергия магнитного поля будет равна:

Явление взаимной индукции – это другой частный случай электромагнитной индукции.

Взаимная индукция – явление возникновения ЭДС индукции в контуре, находящемся в магнитном поле другого контура с переменным током.

При протекании в контуре 1 тока I 1 в контуре 2 возникает ЭДС индукции:

Аналогично, при протекании в контуре 2 тока I 2 в контуре 1 возникает ЭДС индукции:

Коэффициенты пропорциональности , Гн называются взаимной индуктивностью контуров . Они зависят от размеров, формы, расположения контуров и от магнитной проницаемости среды, в которой находятся контуры.

На явлении взаимной индукции основан принцип действия трансформатора.

Трансформатор – устройство, применяемое для повышения или понижения напряжения переменного тока (Яблочков П.Н. , 1878 г.).

Первичная обмотка Вторичная обмотка

N 1 ← число витков → N 2

Отношение называют коэффициентом трансформации .

При k 1 трансформатор является повышающим , а при k понижающим .

3. Принцип действия генератора тока.

Генератор тока – устройство, предназначенное для преобразования механической энергии в энергию электрического тока.

Принцип действия генератора тока, основанного на явлении ЭМИ, можно рассмотреть на примере плоской рамки, вращающейся в однородном магнитном поле между полюсами магнита.

Магнитный поток через площадь S рамки:

, ω – угловая скорость вращения рамки.

ЭДС индукции в рамке:

– амплитуда колебаний ЭДС.

Для усиления эффекта используются рамки с большим числом витков N . Тогда:

ЭДС индукции меняется по закону синуса.

Итоги занятия

Контрольные вопросы

1. В чем заключается явление электромагнитной индукции? Проанализируйте опыты Фарадея.

2. Что является причиной возникновения ЭДС индукции в замкнутом проводящем контуре?

3. Почему для обнаружения индукционного тока лучше использовать замкнутый проводник в виде катушки, а не в виде одного витка провода?

4. Сформулируйте правило Ленца, проиллюстрировав его примерами.

5. Что такое вихревые токи (токи Фуко)? Вредны они или полезны?

6. Почему сердечники трансформаторов не делают сплошными?

7. В чем заключаются явления самоиндукции и взаимной индукции?

8. Какая физическая величина выражается в генри? Дайте определение генри.

9. Что такое генератор тока?

10. Выведите выражение для ЭДС индукции в плоской рамке, равномерно вращающейся в однородном магнитном поле. За счет чего ее можно увеличить?