Сопряжение линии и окружности. Урок инженерной графикм

Могут быть выполнены:
- когда расстояние между центрами O и O1 сопрягаемых дуг больше суммы их радиусов R и R1, т. е. A>R+R1;
- когда расстояние между центрами O и O1 сопрягаемых дуг меньше суммы их радиусов R и R1, т. е. R+R1>A.
Во всех случаях решение задачи сводится к нахождению центра сопряжения O2 и точек сопряжения C и B.

Построим когда A>R+R1

Заданы дуги окружностей радиусов R и R1 и расстояние между их центрами OO1 = A и радиус сопряжения R2.

- из центра O проводим дугу радиуса R+R2;
- из центра O1 проводим дугу радиуса R1+R2.




Для случая когда R+R1>A

построение выполняется аналогично

Построим сопряжение дуг окружностей дугой окружности когда A>R+R1

Заданы дуги окружностей радиусов R и R1 и расстояние между их центрами OO1 = A и радиус сопряжения R2.
Находим центр сопряжения O2:
- из центра O проводим дугу радиуса R2-R;
- из центра O1 проводим дугу радиуса R2-R1.
Пересечение этих дуг определит центр сопряжения O2.

Находим точки сопряжения C и B:
- из точки O2 проводим прямые в центр O и O1;
- находим на пересечении этих прямых с соответствующими дугами точки сопряжения C и B;

точки сопряжения C и B соединяем дугой радиуса R2.

Когда R+R1>A Заданы дуги окружностей радиусов R и R1 и расстояние между их центрами OO1 = A и радиус сопряжения R2

Находим центр сопряжения O2:
- из центра O проводим дугу радиуса R-R2;
- из центра O1 проводим дугу радиуса R1-R2.
Пересечение этих дуг определит центр сопряжения O2.

Находим точки сопряжения C и B:
- из точки O2 проводим прямые в центр O и O1;
- находим на пересечении этих прямых с соответствующими дугами точки сопряжения C и B;

точки сопряжения C и B соединяем дугой радиуса R2

Применение приведенных выше примеров для построения сопряжений элементов рычага,

для построения сопряжений окружностей диаметров 20 и 30 мм дугами AB и EC радиусов R60 и R35 соответственно.

Применение приведенных выше примеров для построения сопряжений элементов однорогого крюка,

Заданы: фa40; b=24; h=36; d=25; d1=20; d2=16,4; d0=M20; l=60; l1=20; l2=30; R=6; R1=20; R2=20; R3=20; R4=15; R5=40; R6=45; R7=6,5; R8=2; c=2; f=4,5

Сопряжения крюка - это наиболее сложный пример на построение сопряжений.
Вычерчивание крюка выполняем в следующем порядке:
- проводим оси и вычерчиваем шейку крюка;
- проводим из центра O1 пересечения осей основную окружность внутреннего очертания крюка. Радиус этой окружности равен a/2.;
- находим центр O2 и проводим из него радиусом R3 основную дугу окружности внешнего очертания крюка. Для построения центра O2 проводим из центра O1 прямую n под углом 45 к осям и засекаем ее из точки N дугой окружности радиуса R3. Точка N удалена от центра O1 на расстояние h+a/2;
- строим сопряжение внешней окружности правым прямолинейным контуром верхней части крюка. Сопрягаемая дуга имеет радиус R4. Центр сопряжения O3 и точки сопряжения K и M находим по общему правилу сопряжения дуги с прямой;
- строим сопряжение внутренней окружности диаметра a с левым прямолинейным контуром верхней части крюка. Радиус сопряжения R4. Центр сопряжения O4 и точки сопряжения A и B определяются аналогично точкам O3, K и M;
- строим очертания носка крюка. Пользуемся построениями приведенными на рисунках... и... .
Находим центры O5, O6 и O7. Носок крюка должен касаться прямой e, проведенной на расстоянии m от горизонтальой оси крюка. Кроме того, зев крюка должен быть равен размеру O. Расстояние O измеряется по линии центров дуг O4O5, ограничивающих контур зева.
Определяем центр O5 дуги радиуса R6. Для этого делаем две засечки: первую из центра O4 радиусом R5+R6+O; вторую - из центра O1 радиусом a/2+R6. Точка сопряжения E лежит на линии центров O1 - O5. Из центра O5 проводим дугу радиуса R6, начиная от точки E.
Находим центр O7 дуги радиуса R7. Засекаем дугой радиуса R6-R7 из центра O5 и засекаем дугой радиуса R6-R7 из центра O6.
Точка сопряжения C лежит на линии центров O5 - O7. Проводим из центра O7 дугу радиуса R7.
Определяем центр O6 дуги радиса R6, сопрягающей носок крюка с внешним контуром крюка. Для этого делаем засечку из центра O2 радиусом R3+R6. Точки сопряжений T и P лежат на линии центров O6 - O7 и O6 - O2.
Из центра O4 проводим дугу, соединяющую точки T и P.

При построении сопряжения дуг окружностей прямой линией можно рассмотреть две задачи: сопрягаемая прямая имеет внешнее или внутреннее касание. В первой задаче (рис. 33, а) из центра дуги меньшего радиуса R1 проводят касательную вспомогательной окружности, проведенной радиусом R - RI . Ее точку касания Ко используют для построения точки сопряжения А на дуге радиуса R .

Рис. 33

Для получения второй точки сопряжения А 1 на дуге радиуса R 1 проводят вспомогательную линию О 1 А 1 параллельно О А . Точками A и А 1 будет ограничен участок внешней касательной прямой.

Задача построения внутренней касательной прямой (рис. 33, б) решается, если вспомогательную окружность построить радиусом, равным R + R 1 .

Сопряжение двух дуг окружностей третьей дугой

При построении сопряжения двух дуг окружностей третьей дугой заданного радиуса можно рассмотреть три случая: когда сопрягающая дуга радиуса R касается заданных дуг радиусов R 1 и R 2 с внешней стороны (рис. 34, а); когда она создает внутреннее касание (рис. 34, б); когда сочетаются внутреннее и внешнее касания (рис. 34, в).

Построение центра О сопрягающей дуги радиуса R при внешнем касании осуществляется в следующем порядке: из центра О 1 радиусом, равным R + R 1 , проводят вспомогательную дугу, а из центра O 2 проводят вспомогательную дугу радиусом R + R 2 . На пересечении дуг получают центр О сопрягаемой дуги радиуса R , а на пересечении радиусом R + R 1 и R + R 2 с дугами окружностей получают точки сопряжения А и А 1 .

Построение центра О при внутреннем касании отличается тем, что из центра О 1 R - R 1 а из центра О 2 радиусом R - R 2 . При сочетании внутреннего и внешнего касания из центра О 1 проводят вспомогательную окружность радиусом, равным R - R 1 , а из центра О 2 - радиусом, равным R + R 2 .

Сопряжение.

Сопряжение- плавный переход одной линии в другую.

Сопряжение пересекающихся прямых дугой окружности заданного радиуса.

Задача сводится к проведению окружности, касающейся обеих заданных прямых линий.

Вариант 1.

Проводим вспомогательные прямые параллельно заданным на расстоянии R от заданных.

Точка пересечения этих прямых будет центромО дуги сопряжения. Перпендикуляры, опущенные из центра О на

заданные прямые, определят точки касания К и К 1 .

Вариант 2.

Построение такое же.

Сопряжения. Построение сопряжения линий.

Вариант 3.

Если требуется провести окружность, чтобы она касалась трех пересекающихся прямых линий, то в этом случае

Радиус не может быть задан условиями задачи. Центр О окружности находится на пересечении биссектрис углов

В и С . Радиусом окружности является перпендикуляр, опущенный из центра О на любую из 3-х заданных прямых

Линий.

Сопряжения. Построение сопряжений линий.

Построение внешнего сопряжения данной окружности с данной прямойдугой заданного радиуса R 1 .

Из центра О данной окружности проводим дугу вспомогательной окружности радиусом R+R 1 .

Проводим прямую параллельно заданной на расстоянии R 1 .

Пересечение прямой и вспомогательной дуги даст точку центра дуги сопряжения О 1 .

Точка касания дуг К лежит на линии ОО 1 .

Точка касания дуги и линии К 1 лежит на пересечении перпендикуляра из точки О 1 на прямую с дугой.

Сопряжения. Построение внешнего сопряжения окружности с прямой.

Построение внутреннего сопряжения данной окружности с данной прямой дугой заданного радиуса R 1 .

Из центра О данной окружности проводим вспомогательную окружность радиусом R- R 1 .

Сопряжения. Построение внутреннего сопряжения окружности с прямой.

Построение сопряжения двух данных окружностей дугой заданного радиуса R 3 .

Внешнее касание.

Из центра окружности О 1 R 1 +R 3 .

Из центра окружности О 2 описываем дугу вспомогательной окружности радиусом R 2 +R 3 .

Пересечение дуг вспомогательных окружностей даст точку О 3 , которая является центром дуги сопряжения

Точки касания К 1 и К 2 находятся на линиях О 1 О 3 и О 2 О 3 .

Внутреннее касание

Из центра окружности О 1 описываем дугу вспомогательной окружности радиусом R 3 -R 1 .

Из центра окружности О 2 описываем дугу вспомогательной окружности радиусом R 3 - R 2 .

Пересечение

(окружности с радиусом R 3) .


Сопряжения. Сопряжение двух окружностей дугой.

Внешнее и внутреннее касание .

Заданы две окружности с центрами О 1 и О 2 с радиусами r 1 и r 2 . Необходимо провести окружность заданного

Радиуса R так, чтобы обеспечить с одной окружностью внутреннее касание, а с другой - внешнее.

Из центра окружности О 1 описываем дугу вспомогательной окружности радиусом R-r 1 .

Изцентра окружности О 2 описываем дугу вспомогательной окружности радиусом R+r 2 .

Пересечение дуг вспомогательных окружностей даст точку, которая является центром дуги сопряжения

(окружности с радиусом R) .

Сопряжения. Сопряжение двух окружностей дугой.

Построение окружности, проходящей через заданную точку А и касающейся данной окружности

в заданной точке В.

Находим середину прямой линии АВ . Через середину линии АВ поводим перпендикуляр. Пересечение продолжения

Линии ОВ и перпендикуляра дает точку О 1 . О 1 - центр искомой окружности с радиусом R = O 1 B = O 1 A.

Сопряжения. Внутреннее касание окружности и дуги .

Построение сопряжения окружности с прямой линией в заданной на прямой точке А.

Из заданной точки А линии LM восстанавливаем перпендикуляр к прямой линии LM . На продолжении

Перпендикуляра откладываем отрезок АВ . АВ = R. Соединяем точку В с центром окружности О 1 прямой.

Из точки А проводим прямую линию параллельно ВО 1 до пересечения с окружностью. Получим точку К - точку

Касания. Соединим точку К с центром окружности О 1 . Продлим линии О 1 К и АВ до пересечения. Получим точку

О 2 , которая является центром дуги сопряжения с радиусом О 2 А = О 2 К.


Сопряжения. Сопряжение окружности с прямой в заданной точке.

Построение сопряжения окружности с прямой линией в заданной на окружности точке А.

Внешнее касание .

Проводим касательную к окружности через точку А. Пересечение касательной с прямой линией LM даст точку В.

Делим угол пополам

О 1 . О 1 О 1 А = О 1 К.

Внутреннее касание.

Проводим касательную к окружности через точку А. Пересечение касательной с прямой LM даст точку В.

Делим угол , образованный касательной и прямой линией LM , пополам . Пересечение биссектрисы угла и

Продолжения радиуса ОА даст точку О 1 . О 1 - О 1 А = О 1 К.

Сопряжения. Сопряжение окружности с прямой в заданной точке на окружности.

Построение сопряжения двух неконцентрических дуг окружностей дугой заданного радиуса.

Проводим из центра дуги О 1 вспомогательную дугу радиусом R 1 -R 3 . Проводим из центра дуги О 2 вспомогательную

Дугу радиусом R 2 +R 3 . Пересечение дуг даст точку О. О - центр дуги сопряжения с радиусом R 3 . Точки касания

К 1 и К 2 лежат на линиях ОО 1 и ОО 2 .

Сопряжения. Сопряжение 2-х неконцентрических дуг окружностей дугой.

Построение лекальной кривой подбором дуг.

Подбирая центры дуг, совпадающих с участками кривой, можно циркулем вычертить любую лекальную кривую.

Для того чтобы дуги плавно переходили одна в другую, необходимо, чтобы точки их сопряжения (касания)

Находились на прямых линиях, соединяющих центры этих дуг.

Последовательность построений.

Подбираем центр 1 дугипроизвольного участка ab.

На продолжении первого радиуса подбираем центр 2 радиуса дуги участка bc.

На продолжении второго радиуса подбираем центр 3 радиуса дуги участка cd и т. д.

Так строим всю кривую.

Сопряжения. Подбор дуг.

Построение сопряжения двух параллельных прямых двумя дугами.

Заданные на прямых параллельных линиях точки А и В соединяем линией АВ.

Выбираем на прямой АВ произвольную точку М .

Делим отрезки АМ и ВМ пополам .

Восстанавливаем в серединах отрезков перпендикуляры.

В точках А и В, заданных прямых, восстанавливаем перпендикуляры к прямым.

Пересечение соответствующих перпендикуляров даст точки О 1 и О 2 .

О 1 центр дуги сопряжения с радиусом О 1 А = О 1 М.

О 2 центр дуги сопряжения с радиусом О 2 В = О 2 М.

Если точку М выбрать на середине линии АВ , то радиусы дуг сопряжения будут равны.

Касание дуг в точке М , находящейся на линии О 1 О 2 .

Сопряжения. Сопряжение параллельных прямых двумя дугами.


Глава 3. НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ

§ 14. Общие сведения

При выполнении графических работ приходится решать многие задачи на построение. Наиболее встречающиеся при этом задачи - деление отрезков прямой, углов и окружностей на равные части, построение различных сопряжений прямых с дугами окружностей и дуг окружностей между собой. Сопряжением называют плавный переход дуги окружности в прямую или в дугу другой окружности.

Наиболее часто встречаются задачи на построение следующих сопряжений: двух прямых дугой окружности (скруглением углов); двух дуг окружностей прямой линией; двух дуг окружностей третьей дугой; дуги и прямой второй дугой.

Построение сопряжений связано с графическим определением центров и точек сопряжения. При построении сопряжения широко используются геометрические места точек (прямые, касательные к окружности; окружности, касательные друг к другу). Это объясняется тем, что они основаны на положениях и теоремах геометрии.

10. Вопросы для самопроверки

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

15. Какая плоская кривая называется эвольвентой?

15. Деление отрезка прямой

§ 15. Деление отрезка прямой

Чтобы разделить заданный отрезок АВ на две равные части, точки его начала и конца принимают за центры, из которых проводят дуги радиусом, по величине превышающим половину отрезка АВ. Дуги проводят до взаимного пересечения, где получают точки С и D. Линия, соединяющая эти точки, разделит отрезок в точке К на две равные части (рис. 30, а).

Чтобы разделить отрезок АВ на заданное количество равных участков п, под любым острым углом к АВ проводят вспомогательную прямую, на которой из общей заданной прямой точки откладывают п равных участков произвольной длины (рис. 30, б). Из последней точки (на чертеже - шестой) проводят прямую до точки В и через точки 5, 4, 3, 2, 1 проводят прямые, параллельные отрезку 6В. Эти прямые и отсекут на отрезке АВ заданное число равных отрезков (в данном случае 6).

Рис. 30 Деление заданного отрезка АВ на две равные части

Изображение:

16. Деление окружности

§ 16. Деление окружности

Чтобы разделить окружность на четыре равные части, проводят два взаимно перпендикулярных диаметра: на пересечении их с окружностью получаем точки, разделяющие окружность на четыре равные части (рис. 31, а).

Чтобы разделить окружность на восемь равных частей, дуги, равные четвертой части окружности, делят пополам. Для этого из двух точек, ограничивающих четверть дуги, как из центров радиусов окружности выполняют засечки за ее пределами. Полученные точки соединяют с центром окружностей и на пересечении их с линией окружности получают точки, делящие четвертные участки пополам, т. е. получают восемь равных участков окружности (рис. 31, б).

На двенадцать равных частей окружность делят следующим образом. Делят окружность на четыре части взаимно перпендикулярными диаметрами. Приняв точки пересечения диаметров с окружностью А, В, С, D за центры, величиной радиуса проводят четыре дуги до пересечения с окружностью. Полученные точки 1, 2, 3, 4, 5, 6, 7, 8 и точки А, В, С, D разделяют окружность на двенадцать равных частей (рис. 31, в).

Пользуясь радиусом, нетрудно разделить окружность и на 3, 5, 6, 7 равных участков.

Рис. 31 Пользуясь радиусом, нетрудно разделить окружность и на несколько равных участков.

Изображение:

17. Округление углов

§ 17. Скругление углов

Сопряжение двух пересекающихся прямых дугой заданного радиуса называют скруглением углов. Его выполняют следующим образом (рис. 32). Параллельно сторонам угла, образованного данными

прямыми, проводят вспомогательные прямые на расстоянии, равном радиусу. Точка пересечения вспомогательных прямых является центром дуги сопряжения.

Из полученного центра О опускают перпендикуляры к сторонам данного угла и на пересечении их получают точки сопряжения А а В. Между этими точками проводят сопрягающую дугу радиусом R из центра О.

Рис. 32 Сопряжение двух пересекающихся прямых дугой заданного радиуса называют скруглением углов

Изображение:

18. Сопряжение дуг окружностей прямой линией

§ 18. Сопряжение дуг окружностей прямой линией

При построении сопряжения дуг окружностей прямой линией можно рассмотреть две задачи: сопрягаемая прямая имеет внешнее или внутреннее касание. В первой задаче (рис. 33, а) из центра дуги

меньшего радиуса R1 проводят касательную вспомогательной окружности, проведенной радиусом R - RI. Ее точку касания Ко используют для построения точки сопряжения А на дуге радиуса R.

Для получения второй точки сопряжения А 1 на дуге радиуса R 1 проводят вспомогательную линию О 1 А 1 параллельно О А. Точками A и А 1 будет ограничен участок внешней касательной прямой.

Задача построения внутренней касательной прямой (рис. 33, б) решается, если вспомогательную окружность построить радиусом, равным R + R 1 ,

Рис. 33 Сопряжение дуг окружностей прямой линией

Изображение:

19. Сопряжение двух дуг окружностей третьей дугой

§ 19. Сопряжение двух дуг окружностей третьей дугой

При построении сопряжения двух дуг окружностей третьей дугой заданного радиуса можно рассмотреть три случая: когда сопрягающая дуга радиуса R касается заданных дуг радиусов R 1 и R 2 с внешней стороны (рис. 34, а); когда она создает внутреннее касание (рис. 34, б); когда сочетаются внутреннее и внешнее касания (рис. 34, в).

Построение центра О сопрягающей дуги радиуса R при внешнем касании осуществляется в следующем порядке: из центра О 1 радиусом, равным R + R 1 , проводят вспомогательную дугу, а из центра O 2 проводят вспомогательную дугу радиусом R + R 2 . На пересечении дуг получают центр О сопрягаемой дуги радиуса R, а на пересечении радиусом R + R 1 и R + R 2 с дугами окружностей получают точки сопряжения А и А 1 .

Построение центра О при внутреннем касании отличается тем, что из центра О 1 R - R 1 а из центра О 2 радиусом R - R 2 . При сочетании внутреннего и внешнего касания из центра О 1 проводят вспомогательную окружность радиусом, равным R - R 1 , а из центра О 2 - радиусом, равным R + R 2 .

20. Сопряжение дуги окружности и прямой линии второй дугой

§ 20. Сопряжение дуги окружности и прямой линии второй дугой

Здесь может быть рассмотрено два случая: внешнее сопряжение (рис. 35, а) и внутреннее (рис. 35, б). В том и в другом случае при построении сопрягающей дуги радиуса R центр сопряжения О лежит на пересечении геометрических мест точек, равно удаленных от прямой и дуги радиуса R на величину R 1 .

При построении внешнего сопряжения параллельно заданной прямой на расстоянии R 1 в сторону окружности проводят вспомогательную прямую, а из центра О радиусом,равным R + R 1 , - вспомогательную окружность, и на их пересечении получают точку О 1 - центр сопрягающей окружности. Из этого центра радиусом R проводят сопрягающую дугу между точками А и А 1 , построение которых видно из чертежа.

Построение внутреннего сопряжения отличается тем, что из центра О проводят вспомогательную дугу радиусом, равным R - R 1 .

Рис 34 Внешнее сопряжение дуги окружности и прямой линии второй дугой

Изображение:

Рис 35 Внутреннее сопряжение дуги окружности и прямой линии второй дугой

Изображение:

21. Овалы

§21. Овалы

Плавные выпуклые кривые, очерченные дугами окружностей разных радиусов, называют овалами. Овалы состоят из двух опорных окружностей с внутренними сопряжениями между ними.

Различают овалы трехцентровые и многоцентровые. При вычерчивании многих деталей, например кулачков, фланцев, крышек и других, контуры их очерчивают овалами. Рассмотрим пример построения овала по заданным осям. Пусть для четырехцентрового овала, очерченного двумя опорными дугами радиуса R и двумя сопрягающими дугами радиуса r , заданы большая ось АВ и малая ось CD. Величину радиусов R u r надо определить путем построений (рис. 36). Соединим концы большой и малой оси отрезком AС, на котором отложим разность СЕ большой и малой полуосей овала. Проведем перпендикуляр к середине отрезка AF, который пересечет большую и малую оси овала в точках О 1 и О 2 . Эти точки будут центрами сопрягающихся дуг овала, а точка сопряжения будет лежать на самом перпендикуляре.

Рис. 36 Плавные выпуклые кривые, очерченные дугами окружностей разных радиусов, называют овалами

22. Лекальные кривые

§ 22. Лекальные кривые

Лекальными называют плоские кривые, вычерченные с помощью лекал по предварительно построенным точкам. К лекальным кривым относят: эллипс параболу, гиперболу, циклоиду, синусоиду эвольвенту и др.

Эллипс представляет собой замкнутую плоскую кривую второго порядка. Она характеризуется тем, что сумма расстояний от любой ее


Рис. 37

точки до двух точек фокусов есть величина постоянная, равная большей оси эллипса. Построить эллипс можно несколькими способами. Например, можно построить эллипс по его большой АВ и малой CD осям (рис. 37, а). На осях эллипса как на диаметрах строят две окружности, которые можно разделить радиусами на несколько частей. Через точки деления большой окружности проводят прямые, параллельные малой оси эллипса, а через точки деления малой окружности - прямые, параллельные большой оси эллипса. Точки пересечения этих прямых и являются точками эллипса.

Можно привести пример построения эллипса по двум сопряженным диаметрам (рис. 37,б) MN и KL. Сопряженными два диаметра называют, если каждый из них делит пополам хорды, параллельные другому диаметру. На сопряженных диаметрах строят параллелограмм. Один из диаметров MN делят на равные части; на такие же части делят и стороны параллелограмма, параллельные другому диаметру, нумеруя их, как показано на чертеже. Из концов второго сопряженного диаметра KL через точки деления проводят лучи. В пересечении одноименных лучей получают точки эллипса.

Параболой называют незамкнутую кривую второго порядка, все точки которой равно удалены от одной точки - фокуса и от данной прямой - директрисы.

Рассмотрим пример построения параболы по ее вершине О и какой-либо точке В (рис. 38, а). С этой целью строят прямоугольник ОABC и делят его стороны на равные части, из точек деления проводят лучи. В пересечении одноименных лучей получают точки параболы.

Можно привести пример построения параболы в виде кривой, касательной прямой с заданными на них точками А и В (рис. 38, б). Стороны угла, образованного этими прямыми, делят на равные части и ну-

меруют точки деления. Одноименные точки соединяют прямыми. Параболу вычерчивают как огибающую этих прямых.

Гиперболой называют плоскую незамкнутую кривую второго порядка, состоящую из двух веток, концы которых удаляются в бесконечность, стремясь к своим асимптотам. Гипербола отличается тем, что каждая точка ее обладает особым свойством: разность ее расстояний от двух данных точек-фокусов есть величина постоянная, равная расстоянию между вершинами кривой. Если асимптоты гиперболы взаимно перпендикулярны, она называется равнобокой. Равнобокая гипербола широко применяется для построения различных диаграмм, когда задана своими координатами одна точка М (рис. 38, в). В этом случае через заданную точку проводят линии АВ и KL параллельно координатным осям. Из полученных точек пересечения проводят линии, параллельные координатным осям. В их пересечении получают точки гиперболы.

Сопряжение дуги и прямой дугой окружности заданного радиуса

Могут встретиться два случая такого сопряжения: внешнее касание сопрягающей дуги с заданной и внутреннее касание. В обоих случаях задача сводится к определению центра сопрягающей дуги и точек касания.

При внешнем касании (рисунок 52, а) из центра заданной дуги – точки O 1 проводят вспомогательную дугу радиусом R + R с . На расстоянии, равном радиусу R c сопрягающей дуги, параллельно заданной прямой проводят прямую. Точка О пересечения вспомогательной дуги и прямой есть центр сопрягающей дуги. На пересечении прямой, соединяющей точки О и O 1 с заданной дугой, отмечают точку касания A . Вторую точку касания В определяют как точку пересечения заданной прямой с перпендикуляром, опущенным на нее из точки О .

При внутреннем касании (рисунок 52, б) определение центра сопрягающей дуги и точек касания аналогичны предыдущему случаю с той лишь разницей, что радиус вспомогательной дуги равен R c R .

Рисунок 52

Различают три вида такого сопряжения:

1) внешнее сопряжение при внешнем касании сопрягающей дуги с двумя заданными;

2) внутреннее сопряжение при внутреннем касании сопрягающей дуги с двумя заданными;

3) смешанное сопряжение при внешнем касании сопрягающей дуги с одной заданной и внутреннем касании с другой.

При внешнем сопряжении (рисунок 53, а) центр сопрягающей дуги точка O располагается в точке пересечения вспомогательных дуг радиусами r + R c и R + R c , проведенных соответственно из центров сопрягаемых дуг – точек O 2 и O 1 . Точки касания A и B определяются как точки пересечения заданных дуг с прямыми OO 1 и OO 2 .

Внутреннее сопряжение дуг радиусами r и R дугой радиусом R c показано на рисунке 53, б. Для определения центра сопрягающей дуги – точки О проводят вспомогательные дуги радиусами R c r и R c R соответственно из центров заданных дуг – точек O 2 и O 1 . Точка О пересечения этих дуг и явится центром сопрягающей дуги. Из точки О через точки O 1 и O 2 проводят прямые до пересечения с заданными дугами и получают соответственно две точки касания – A и B .

Рисунок 53

При смешанном сопряжении центр сопрягающей дуги – точка О определяется как точка пересечения двух вспомогательных дуг радиусами R c +R и R с r (рисунок 53, в) или R с R и R с + r , проведенных соответственно из центров заданных дуг – точек O 1 и O 2 . Для определения точек касания сопрягающей дуги с заданными проводят две прямые: одну через точки О и O 1 , другую через точки О и O 2 . Точки пересечения каждой из них с заданными дугами дают искомые точки касания A и B .