Свойства и способы расчета средних арифметических величин. Свойства средней арифметической

Свойство 1. Средняя арифметическая постоянной величины равна этой постоянной: при

Свойство 2. Алгебраическая сумма отклонений индивидуальных значений признака от средней арифметической равна нулю: для несгруппированных данных и для рядов распределения.

Это свойство означает, что сумма положительных отклонений равна сумме отрицательных отклонений, т.е. все отклонения, обусловленные случайными причинами взаимно погашаются.

Свойство 3. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической есть число минимальное: для несгруппировочных данных и для рядов распределения. Это свойство означает, что сумма квадратов отклонений индивидуальных значений признака от средней арифметической всегда меньше суммы отклонений вариантов признака от любого другого значения, даже мало отличающегося от средней.

Второе и третье свойство средней арифметической применяются для проверки правильности расчета средней величины; при изучении закономерностей изменения уровней ряда динамики; для нахождения параметров уравнения регрессии при изучении корреляционной связи между признаками.

Все три первых свойства выражают сущностные черты средней как статистической категории.

Следующие свойства средней рассматриваются как вычислительные, поскольку они имеют некоторое прикладное значение.

Свойство 4. Если все веса (частоты) разделить на какое-либо постоянное число d, то средняя арифметическая не изменится, поскольку это сокращение в равной степени коснется и числителя и знаменателя формулы расчета средней.

Из этого свойства вытекают два важных следствия.

Следствие 1. Если все веса равны между собой, то вычисление средней арифметической взвешенной можно заменить вычислением средней арифметической простой.

Следствие 2 . Абсолютные значения частот (весов) можно заменять их удельными весами.

Свойство 5. Если все варианты разделить или умножить на какое-либо постоянное число d, то средняя арифметическая уменьшиться или увеличиться в d раз.



Свойство 6. Если все варианты уменьшить или увеличить на постоянной число A, то и со средней произойдут аналогичные изменения.

Прикладные свойства средней арифметической можно проиллюстрировать, применив способ расчета средней от условного начала (способ моментов).

Средняя арифметическая способом моментов вычисляется по формуле:

где А – середина какого-либо интервала (предпочтение отдается центральному);

d – величина равновеликого интервала, или наибольший кратный делитель интервалов;

m 1 – момент первого порядка.

Момент первого порядка определяется следующим образом:

.

Технику применения этого способа расчета проиллюстрируем по данным предшествующего примера.

Таблица 5.6

Стаж работы, лет Число рабочих Середина интервала x
до 5 2,5 -10 -2 -28
5-10 7,5 -5 -1 -22
10-15 12,5
15-20 17,5 +5 +1 +25
20 и выше 22,5 +10 +2 +22
Итого Х Х Х -3

Как видно из расчетов, приведенных в табл. 5.6 из всех вариантов вычитается одно из их значений 12,5, которое приравнивается нулю и служит условным началом отсчета. В результате деления разностей на величину интервала – 5 получают новые варианты.

Согласно итогу табл. 5.6 имеем: .

Результат вычислений по способу моментов аналогичен результату, который был получен применением основного способа расчета по средней арифметической взвешенной.

Структурные средние

В отличие от степенных средних, которые рассчитываются на основе использования всех вариант значений признака, структурные средние выступают как конкретные величины, совпадающие с вполне определенными вариантами ряда распределения. Мода и медиана характеризуют величину варианта, занимающего определенное положение в ранжированном вариационном ряду.

Мода – это величина признака, которая чаще всего встречается в данной совокупности. В вариационном ряду это будет варианта, имеющая наибольшую частоту.

Нахождение моды в дискретном ряду распределения не требует вычислений. Путем просмотра столбца частот находят наибольшую частоту.

Например, распределение рабочих предприятия по квалификации характеризуются данными табл. 5.7.

Таблица 5.7

Наибольшая частота в этом ряду распределения 80, значит мода равна четвертому разряду. Следовательно, наиболее часто встречаются рабочие, имеющие четвертый разряд.

Если ряд распределения интервальный , то по наибольшей частоте устанавливают только модальный интервал, а затем уже вычисляют моду по формуле:

,

где – нижняя граница модального интервала;

– величина модального интервала;

– частота модального интервала;

– частота предмодального интервала;

– частота послемодального интервала.

Вычислим моду по данным, приведенным в табл. 5.8.

Таблица 5.8

Это значит, что чаще всего предприятия имеют прибыль 726 млн р.

Практическое применение моды ограниченно. На значение моды ориентируются, когда определяют наиболее ходовые размеры обуви и одежды при планировании их производства и реализации, при изучении цен на оптовых и розничных рынках (метод основного массива). Моду используют вместо средней величины при подсчете возможных резервов производства.

Медиана соответствует варианте, стоящей в центре ранжированного ряда распределения. Это значение признака, которое делит всю совокупность на две равные части.

Положение медианы определяется ее номером (N).

где – число единиц совокупности. Используем данные примера, приведенные в табл. 5.7 для определения медианы.

, т.е. медиана равна средней арифметической из 100-го и 110-го значений признака. По накопленным частотам определяем, что 100-я и 110-я единицы ряда имеют величину признака, равную четвертому разряду, т.е. медиана равна четвертому разряду.

Медиана в интервальном ряду распределения определяется в следующем порядке.

1. Подсчитываются накопленные частоты по данному ранжированному ряду распределения.

2. На основе накопленных частот устанавливается медианный интервал. Он находится там, где первая накопленная частота равна или больше половины совокупности (всех частот).

3. Вычисляется медиана по формуле:

,

где – нижняя граница медианного интервала;

– величина интервала;

– сумма всех частот;

– сумма накопленных частот, предшествующих медианному интервалу;

– частота медианного интервала.

Вычислим медиану по данным табл. 5.8.

Первая накопленная частота, которая равна половине совокупности 30, значит медиана находится в интервале 500-700.

Это означает, что половина предприятий получает прибыль до 676 млн р., а другая половина свыше 676 млн р.

Медиану часто используют вместо средней величины, когда совокупность неоднородна, т.к. она не находится под влиянием крайних значений признака. Практическое применение медианы также связано с ее свойством минимальности. Абсолютная сумма отклонений индивидуальных значений от медианы есть величина наименьшая. Поэтому медиану применяют в расчетах при проектировании места расположения объектов, которые будут использоваться различными организациями и лицами.

Метод моментов приравнивает моменты теоретического распределения к моментам эмпирического распределения (распределения, построенного по наблюдениям). Из полученных уравнений находятся оценки параметров распределения. Например, для распределения с двумя параметрами первые два момента (среднее и дисперсия распределения, соответственно, m и s) будут приравнены первым двум эмпирическим (выборочным) моментам (среднему и дисперсии выборки, соответственно), и затем будет произведено оценивание.

Где А – условный нуль, равный варианте с максимальной частотой (середина интервала с максимальной частотой), h – шаг интервала,

Назначение сервиса . С помощью онлайн-калькулятора вычисляется среднее значение по способу моментов. Результат решения оформляется в формате Word .

Инструкция . Для получения решения необходимо заполнить исходные данные и выбрать параметры отчета для оформления в Word.

Алгоритм нахождения средней по способу моментов

Пример . Затраты рабочего времени на однородную технологическую операцию распределялись между рабочими следующим образом:

Требуется определить среднюю величину затрат рабочего времени и среднеквадратическое отклонение по способу моментов; коэффициент вариации; моду и медиану.
Таблица для расчета показателей.
Группы Середина интервала, x i Кол-во, f i x i ·f i Накопленная частота, S (x-x ) 2 ·f
5 - 10 7.5 20 150 20 4600.56
15 - 20 17.5 25 437.5 45 667.36
20 - 25 22.5 50 1125 95 1.39
25 - 30 27.5 30 825 125 700.83
30 - 35 32.5 15 487.5 140 1450.42
35 - 40 37.5 10 375 150 2200.28
150 3400 9620.83

Мода

где x 0 – начало модального интервала; h – величина интервала; f 2 –частота, соответствующая модальному интервалу; f 1 – предмодальная частота; f 3 – послемодальная частота.
Выбираем в качестве начала интервала 20, так как именно на этот интервал приходится наибольшее количество.

Наиболее часто встречающееся значение ряда – 22.78 мин.
Медиана
Медианным является интервал 20 - 25, т.к. в этом интервале накопленная частота S, больше медианного номера (медианным называется первый интервал, накопленная частота S которого превышает половину общей суммы частот).

Таким образом, 50% единиц совокупности будут меньше по величине 23 мин.
.



Находим А = 22.5, шаг интервала h = 5.
Средний квадрат отклонений по способу моментов .
x ц x * i x * i f i 2 f i
7.5 -3 -60 180
17.5 -1 -25 25
22.5 0 0 0
27.5 1 30 30
32.5 2 30 60
37.5 3 30 90
5 385

мин.

Среднее квадратическое отклонение .
мин.
Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>30% ,но v<70%, то вариация умеренная.

Пример

Для оценки ряда распределения найдем следующие показатели:

Средняя взвешенная

Среднее значение изучаемого признака по способу моментов .

где А – условный нуль, равный варианте с максимальной частотой (середина интервала с максимальной частотой), h – шаг интервала.

Средняя арифметическая обладает целым рядом свойств, которые более полно раскрывают ее сущность и упрощают расчет:

1. Произведение средней на сумму частот всегда равно сумме произведений вариант на частоты, т.е.

2.Средняя арифметическая суммы варьирующих величин равна сумме средних арифметических этих величин:

3.Алгебраическая сумма отклонений индивидуальных значений признака от средней равна нулю:

4.Сумма квадратов отклонений вариантов от средней меньше, чем сумма квадратов отклонений от любой другой произвольной величины , т.е:

5. Если все варианты ряда уменьшить или увеличить на одно и то же число , то средняя уменьшится на это же число :

6.Если все варианты ряда уменьшить или увеличить в раз, то средняя также уменьшится или увеличится в раз:

7.Если все частоты (веса) увеличить или уменьшить в раз, то средняя арифметическая не изменится:

Этот способ основан на использовании математических свойств средней арифметической величины. В этом случае средняя величина вычисляется по формуле: , где i – величина равного интервала или любое постоянное число не равное 0; m 1 – момент первого порядка, который рассчитывается по формуле: ; А – любое постоянное число.

18 СРЕДНЯЯ ГАРМОНИЧЕСКАЯ ПРОСТАЯ И ВЗВЕШЕННАЯ .

Средняя гармоническая используется в случаях, кода неизвестны частоты (f i), а известен объем изучаемого признака (x i *f i =M i).

По примеру 2 определим среднюю заработную плату в 2001г.

В исходной информации 2001г. нет данных о количестве работников, однако ее нетрудно рассчитать как отношение фонда оплаты труда к средней зарплате.

Тогда 2769,4 руб., т.е. средняя зарплата в 2001г. –2769,4 руб.

В данном случае использована средняя гармоническая: ,

где М i –фонд оплаты труда в отдельном цеху; x i –зарплата в отдельном цеху.

Следовательно, средняя гармоническая применяется тогда, когда неизвестен один из сомножителей, но известно произведение «М».

Средняя гармоническая используется для расчета средней производительности труда, среднего процента выполнения норм, средней зарплаты и т.д.

Если произведения «М» равны между собой, то используется средняя гармоническая простая: , где n – число вариант.

СРЕДНЯЯ ГЕОМЕТРИЧЕСКАЯ И СРЕДНЯЯ ХРОНОЛОГИЧЕСКАЯ.

Средняя геометрическая используется для анализа динамики явлений и позволяет определить средний коэффициент роста. При расчете средней геометрической индивидуальные значения признака обычно представляют собой относительные показатели динамики, построенные в виде цепных величин, как отношения каждого уровня ряда к предыдущему уровню.

, - цепные коэффициенты роста;

n – число цепных коэффициентов роста.

Если исходные данные даны по состоянию на определенные даты, то средний уровень признака определяется по формуле средней хронологической. Если промежутками между датами (моментами) равные, то средний уровень определяется по формуле средней хронологической простой..

Рассмотрим ее расчет на конкретных примерах.

Пример. Имеются следующие данные об остатках вкладов населения в банках России в первом полугодии 1997 г. (на начало месяца):

Средний остаток вкладов населения за первое полугодие 1997 г. (по формуле средней хронологической простой) составил.

Наиболее часто в характеристике вариационного ряда используют среднюю арифметическую.

Различают три вида средней арифметической: простая, взвешенная и вычисленная по способу моментов. Средняя арифметическая, которая рассчитана в вариационном ряду, где каждая варианта встречается только 1 раз называется средней арифметической простой (табл. 4) .Ее определяют по формуле:

где М – средняя арифметическая,

V – варианта изучаемого признака,

n –число наблюдений.

Если в исследуемом ряду одна или несколько вариант повторяются несколько раз, то вычисляют среднюю арифметическую взвешенную (табл. 2) , когда учитывается вес каждой варианты в зависимости от частоты ее встречаемости. Расчет такой средней проводят по формуле:

где М – средняя арифметическая взвешенная;

∑ - знак суммы;

V – варианты (числовые значения изучаемого признака);

P – частота, с которой встречается одна и та же варианта признака, т.е. сумма вариант с данным значением признака;

n – число наблюдений, т.е., сумма всех частот или общее число всех вариант (∑p).

Таблица 4

(Расчет простой средней арифметической)

ЧИСЛО СТУДЕНТОВ (p)
∑V = 691 n = 9
M = уд/мин.

Пример: при определений среднего пульса у студентов перед экзаменом следует сначала вычислить ∑ V * p, а затем среднюю величинуM = = 76,9 уд/мин.(табл. 5).

Нередко при большом числе наблюдений для вычисления средней арифметической взвешенной используют сгруппированный вариационный (или разбитый на равные интервалы) ряд. Такой вариационный ряд должен быть непрерывным, варианты, расположенные в определенном порядке (возрастания или убывания), следуют друг за другом.

Таблица 5

Определение среднего пульса у студентов-мужчин перед экзаменом

(Расчет взвешенной средней арифметической)

ПУЛЬС У СТУДЕНТОВ-МУЖЧИН (V) ЧИСЛО СТУДЕНТОВ (p) V * p
∑p = n = 26∑V * p = 2000 M = = 76,9 уд/мин.

При группировке вариационного ряда следует учитывать, что интервал выбирает исследователь, величина интервала зависит от цели и задач исследования.

Число групп в сгруппированном вариационном ряду определяют в зависимости от числа наблюдений.При числе наблюдений от 31 до 100 рекомендуется иметь 5-6 групп, от 101 до 300 - от 6 до 8 групп, от 300 до 1000 наблюдений можно использовать от 10 до 15 групп. Расчет интервала (i) проводится по формеле:i = ,

Vmax – максимальное значение варианты,

Vmin – минимальное значение варианты.

Расчет средней взвешенной в сгруппированном ряду (или интервальном ряду требует определения середины интервала, которую вычисляют как полусуммукрайных значений группы.(табл. 3). Расчет средней величины производят по формуле: M = = =176,7см.(табл. 6).

Таблица 6

(Расчет взвешенной средней арифметическойв сгруппированном ряду)

ЦЕНТРАЛЬНАЯ ВАРИАНТА ГРУППЫ (V 1), СМ. ЧИСЛО СТУДЕНТОВ (p) V 1 ∙ p
162 = 167 = 172 = 177 = 182 187
∑p = n =212 ∑ V 1 ∙ p = 37469 M = = = 176,74 см.

В случаях, когда варианты представлены большими числами (например, масса тела новорожденных в граммах) и имеется число наблюдений, выраженное сотнями или тысячами случаев, взвешенная средняя арифметическая может быть вычислена по способу моментов (табл. 7) по формуле:

гдеA – условно взятая средняя величина (чаще всего в качестве условной средней берется Мо);

∑ - знак суммы;

α – отклонение каждой варианты в интервалах от условной средней =

p – частота (число раз, с которым встречается одна и та же варианта признака).

αp – произведение отклонения (α) на частоту (p);

n – число наблюдений, т.е. сумма всех частот или общее число всех вариант (∑p).

i – величина интервала = (Vmax – максимальное значение варианты, Vmin – минимальное значение варианты).

Таким образом, средняя взвешенная вычисленная по способу моментов, составила 176,74 см., что практический совпало с расчетами средней обычным методом – 176,7 см.. Однако при вычислений средней по способу моментов используют простые цифры, вычисление менее громоздки, что значительно облегчает и ускоряет расчеты.

Средняя арифметическая (средняя взвешенная) имеет ряд свойств , которые используют в некоторых случаях для упрощения расчета средней и получения ориентировочной величины.

1. Средняя арифметическая занимает срединное положение в строго симметричном вариационном ряду (M = M 0 = M e) .

2. Средняя арифметическая имеет абстрактный характер и является обобщающей величиной, выявляющей закономерность.

3. Алгебраическая сумма отклонений всех вариант от средней равна нулю: ∑ (V - M) = 0. На этом свойстве основан расчет средней по способу моментов.

Таблица 7

Определение среднего роста студентов-мужчин 20-22 лет

(Методика расчета средней арифметической величины по способу моментов, i = 5)

РОСТ СТУДЕНТОВ-МУЖЧИН (V), СМ. ЦЕНТРАЛЬНАЯ ВАРИАНТА ГРУППЫ (V 1), СМ. ЧИСЛО СТУДЕНТОВ (p) α = a ∙ p
160-164 165-169 170-174 175-179 180-184 185-189 ∑p = n =212 -3 -2 -1 +1 +2 -12 -42 -47 +54 +36 ∑a∙p = -11
M= 177 +

Вариационный размах (или размах вариации) - это разница между максимальным и минимальным значениями признака:

В нашем примере размах вариации сменной выработки рабочих составляет: в первой бригаде R=105-95=10 дет., во второй бригаде R=125-75=50 дет. (в 5 раз больше). Это говорит о том, что выработка 1-й бригады более «устойчива», но резервов роста выработки больше у второй бригады, т.к. в случае достижения всеми рабочими максимальной для этой бригады выработки, ею может быть изготовлено 3*125=375 деталей, а в 1-й бригаде только 105*3=315 деталей.
Если крайние значения признака не типичны для совокупности, то используют квартильный или децильный размахи. Квартильный размах RQ= Q3-Q1 охватывает 50% объема совокупности, децильный размах первый RD1 = D9-D1охватывает 80% данных, второй децильный размах RD2= D8-D2 – 60 %.
Недостатком показателя вариационного размаха является, но что его величина не отражает все колебания признака.
Простейшим обобщающим показателем, отражающим все колебания признака, является среднее линейное отклонение , представляющее собой среднюю арифметическую абсолютных отклонений отдельных вариант от их средней величины:

,
для сгруппированных данных
,
где хi – значение признака в дискретном ряду или середина интервала в интервальном распределении.
В вышеприведенных формулах разности в числителе взяты по модулю, иначе, согласно свойству средней арифметической, числитель всегда будет равен нулю. Поэтому среднее линейное отклонение в статистической практике применяют редко, только в тех случаях, когда суммирование показателей без учета знака имеет экономический смысл. С его помощью, например, анализируется состав работающих, рентабельность производства, оборот внешней торговли.
Дисперсия признака – это средний квадрат отклонений вариант от их средней величины:
простая дисперсия
,
взвешенная дисперсия
.
Формулу для расчета дисперсии можно упростить:

Таким образом, дисперсия равна разности средней из квадратов вариант и квадрата средней из вариант совокупности:
.
Однако, вследствие суммирования квадратов отклонений дисперсия дает искаженное представление об отклонениях, поэтому ее на основе рассчитывают среднее квадратическое отклонение , которое показывает, на сколько в среднем отклоняются конкретные варианты признака от их среднего значения. Вычисляется путем извлечения квадратного корня из дисперсии:
для несгруппированных данных
,
для вариационного ряда

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность, тем более надежной (типичной) будет средняя величина.
Среднее линейное и среднее квадратичное отклонение - именованные числа, т. е. выражаются в единицах измерения признака, идентичны по содержанию и близки по значению.
Рассчитывать абсолютные показатели вариации рекомендуется с помощью таблиц.
Таблица 3 – Расчет характеристик вариации (на примере срока данных о сменной выработке рабочих бригады)


Число рабочих,

Середина интервала,

Расчетные значения

Итого:

Среднесменная выработка рабочих:

Среднее линейное отклонение:

Дисперсия выработки:

Среднее квадратическое отклонение выработки отдельных рабочих от средней выработки:
.

1 Расчет дисперсии способом моментов

Вычисление дисперсий связано с громоздкими расчетами (особенно если средняя величина выражена большим числом с несколькими десятичными знаками). Расчеты можно упростить, если использовать упрощенную формулу и свойства дисперсии.
Дисперсия обладает следующими свойствами:

  1. если все значения признака уменьшить или увеличить на одну и ту же величину А, то дисперсия от этого не уменьшится:

,

, то или
Используя свойства дисперсии и сначала уменьшив все варианты совокупности на величину А, а затем разделив на величину интервала h, получим формулу вычисления дисперсии в вариационных рядах с равными интервалами способом моментов:
,
где – дисперсия, исчисленная по способу моментов;
h – величина интервала вариационного ряда;
– новые (преобразованные) значения вариант;
А– постоянная величина, в качестве которой используют середину интервала, обладающего наибольшей частотой; либо вариант, имеющий наибольшую частоту;
– квадрат момента первого порядка;
– момент второго порядка.
Выполним расчет дисперсии способом моментов на основе данных о сменной выработке рабочих бригады.
Таблица 4 – Расчет дисперсии по способу моментов


Группы рабочих по выработке, шт.

Число рабочих,

Середина интервала,

Расчетные значения

Порядок расчета:


  1. рассчитываем дисперсию:

2 Расчет дисперсии альтернативного признака

Среди признаков, изучаемых статистикой, есть и такие, которым свойственны лишь два взаимно исключающих значения. Это альтернативные признаки. Им придается соответственно два количественных значения: варианты 1 и 0. Частостью варианты 1, которая обозначается p, является доля единиц, обладающих данным признаком. Разность 1-р=q является частостью варианты 0. Таким образом,


хi

Средняя арифметическая альтернативного признака
, т. к. p+q=1.

Дисперсия альтернативного признака
, т.к. 1-р=q
Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком, и доли единиц, не обладающих этим признаком.
Если значения 1 и 0 встречаются одинаково часто, т. е. p=q, дисперсия достигает своего максимума pq=0,25.
Дисперсия альтернативного признака используется в выборочных обследованиях, например, качества продукции.

3 Межгрупповая дисперсия. Правило сложения дисперсий

Дисперсия, в отличие от других характеристик вариации, является аддитивной величиной. То есть в совокупности, которая разделена на группы по факторному признаку х, дисперсия результативного признака y может быть разложена на дисперсию в каждой группе (внутригрупповую) и дисперсию между группами (межгрупповую). Тогда, наряду с изучением вариации признака по всей совокупности в целом, становится возможным изучение вариации в каждой группе, а также между этими группами.

Общая дисперсия измеряет вариацию признака у по всей совокупности под влиянием всех факторов, вызвавших эту вариацию (отклонения). Она равна среднему квадрату отклонений отдельных значений признака у от общей средней и может быть вычислена как простая или взвешенная дисперсия.
Межгрупповая дисперсия характеризует вариацию результативного признака у , вызванную влиянием признака-фактора х , положенного в основу группировки. Она характеризует вариацию групповых средних и равна среднему квадрату отклонений групповых средних от общей средней :
,
где – средняя арифметическая i-той группы;
– численность единиц в i-той группе (частота i-той группы);
– общая средняя совокупности.
Внутригрупповая дисперсия отражает случайную вариацию, т. е. ту часть вариации, которая вызвана влиянием неучтенных факторов и не зависит от признака-фактора, положенного в основу группировки. Она характеризует вариацию индивидуальных значений относительно групповых средних, равна среднему квадрату отклонений отдельных значений признака у внутри группы от средней арифметической этой группы (групповой средней) и вычисляется как простая или взвешенная дисперсия для каждой группы:
или ,
где – число единиц в группе.
На основании внутригрупповых дисперсий по каждой группе можно определить общую среднюю из внутригрупповых дисперсий :
.
Взаимосвязь между тремя дисперсиями получила название правила сложения дисперсий , согласно которому общая дисперсия равна сумме межгрупповой дисперсии и средней из внутригрупповых дисперсий:

Пример . При изучении влияния тарифного разряда (квалификации) рабочих на уровень производительности их труда получены следующие данные.
Таблица 5 – Распределение рабочих по среднечасовой выработке.



п/п

Рабочие 4-го разряда

Рабочие 5-го разряда

Выработка
рабочего, шт.,

Выработка
рабочего, шт.,

1
2
3
4
5
6

7
9
9
10
12
13

7-10=-3
9-10=-1
-1
0
2
3

9
1
1
0
4
9

1
2
3
4

14
14
15
17

14-15=-1
-1
0
2

1
1
0
4

В данном примере рабочие разделены на две группы по факторному признаку х – квалификации, которая характеризуется их разрядом. Результативный признак – выработка – варьируется как под его влиянием (межгрупповая вариация), так и за счет других случайных факторов (внутригрупповая вариация). Задача заключается в измерении этих вариаций с помощью трех дисперсий: общей, межгрупповой и внутригрупповой. Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х . Остальная часть общей вариации у вызвана изменением прочих факторов.
В примере эмпирический коэффициент детерминации равен:
или 66,7 %,
Это означает, что на 66,7% вариация производительности труда рабочих обусловлена различиями в квалификации, а на 33,3% – влиянием прочих факторов.
Эмпирическое корреляционное отношение показывает тесноту связи между группировочным и результативными признаками. Рассчитывается как корень квадратный из эмпирического коэффициента детерминации:

Эмпирическое корреляционное отношение , как и , может принимать значения от 0 до 1.
Если связь отсутствует, то =0. В этом случае =0, то есть групповые средние равны между собой и межгрупповой вариации нет. Значит группировочный признак – фактор не влияет на образование общей вариации.
Если связь функциональная, то =1. В этом случае дисперсия групповых средних равна общей дисперсии (), то есть внутригрупповой вариации нет. Это означает, что группировочный признак полностью определяет вариацию изучаемого результативного признака.
Чем ближе значение корреляционного отношения к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
Для качественной оценки тесноты связи между признаками пользуются соотношениями Чэддока.

В примере , что свидетельствует о тесной связи между производительностью труда рабочих и их квалификацией.