Пример расчета буронабивной сваи по боковой поверхности. Строительство фундамента на буронабивных сваях

Прежде чем приступать к проектированию и тем более строительству свайного фундамента, необходимо пройти ряд подготовительных этапов, заключающих в себе изыскания и расчеты различного типа. Результатом правильно проведенных предварительных мероприятий будет прочный, экономичный, и, главное, надежный фундамент. Одной из ключевых характеристик, влияющих на рентабельность того или иного типа свай, являются геометрические параметры свайных колонн.

Верно определить размеры поперечного сечения, глубину заложения, количество скважин и другие параметры, значит построить надежное основание для будущего здания.

Типология буронабивных свайных фундаментов

Буронабивные свайные фундаменты — это одна из немногих конструкций, не поддающихся строгой классификации. Типовые размеры, представленные в различных сортаментах, сводах правил и государственных стандартах, являются лишь приблизительными рекомендациями. Тогда как серийно производимые изделия должны пройти ряд строгих проверок на соответствие стандартам качества, буронабивные сваи практически невозможно испытать, поскольку изготавливаются они в полевых условиях и закладываются прямо в грунт.

Бетонируемые непосредственно на строительном участке, буронабивные сваи отличаются высокими показателями прочности, вычислить которые можно только эмпирически. Испытания, проводимые на опытных образцах, показывают работу исключительно данных экспериментальных изделий. Поскольку условия изготовления, такие как тип грунта, уровень грунтовых вод, водонасыщенность рабочего слоя почвы, характеристики использованных арматуры и бетона, невозможно предугадать.Все имеющиеся прочностные и геометрические данные приблизительны и представлены только в качестве примера.


Конструкция буронабивных свай

Для типизации буронабивных свай используют деление по геометрическим признакам и технологическим особенностям производства и эксплуатации. СНиП 2.02.03-85 является актуализированной версий свода строительных норм и правил от 1983 года и предлагает классифицировать буронабивные сваи по способу изготовления следующим образом:

  • Буронабивные сплошного сечения:
  • с уширениями и без них;
  • без крепления стенок;
  • с укреплением боковых стенок скважин глиняным раствором или обсадными трубами (при дислокации свайной колонны ниже уровня грунтовых вод)
  • Буронабивные с применением технологии непрерывного полого шнека;
  • Береты – буровые, изготовляемые с помощью плоского грейфера или грунтовой фрезы;
  • Буронабивные с камуфлетной пятой, устраиваемые с последующим образованием уширения с помощью взрыва (в том числе и электрохимического).

От способа изготовления свайных столбов зависит их окончательная стоимость и, главное, максимальные и минимальные размеры свайных колонн. Важно учитывать разновидность буронабивных свай до начала строительства, поскольку различные технологии производства предполагают разный набор специализированного оборудования, а также допустимые габариты скважин.

Предварительная подготовка к расчету

Определенные геометрические характеристики свайного столба это не просто прихоть подрядчика и проектировщика, а потребность, обусловленная необходимостью подобрать наиболее рациональный объем фундамента, способный не только выдержать предполагаемую нагрузку будущего здания, но и сэкономить бюджет заказчика. В каждом отдельно взятом случае перед определением размеров и устройством фундамента необходимо проводить ряд следующих исследований и изысканий:

  • геологическая разведка местности – бурение контрольных скважин в стратегических точках участка для определения типа и величины грунтовых напластований, несущей способности грунта и прочих характеристик основания;
  • гидрогеологические изыскания – определение уровня грунтовых вод, водонасыщенности грунта;
  • расчет общей массы здания и определение предельной расчетной нагрузки на погонный метр фундаментной плиты;
  • окончательный расчет геометрических параметров буронабивной сваи и необходимого количества свай выбранного сечения.

Результатом расчета будет сводная таблица размеров свайных колонн, и схема наиболее рационального фундамента с учетом выбранного типа буронабивных свай. Расчет размеров свай можно доверить проектному отделу строительной фирмы или провести самостоятельно. Не рекомендуется использование данных геологической разведки, полученных на соседствующих земельных наделах. Информацию о глубине промерзания грунта можно найти в СП 22.13330.2011.

Расчет свайного поля

После проведения геологических изысканий можно приступать к расчету свайного поля. Учитывая тип грунта, а также расположение уровня грунтовых вод, можно составить представление о предположительной глубине заложения скважин. В расположенной ниже таблице приведены примерные рекомендации глубин заложения в слабо просадочные грунты скважин, безопасных при указанных условиях:


Влажные, просадочные, высокопучинистые и другие ненадежные типы грунтовых оснований не рекомендуется использовать для устройства в них буронабивных свай.


Схема расположения грунтовых вод

Грунты с уровнем подземных вод выше, чем 1000 мм, считаются водонасыщенными и устройство свайных фундаментов на таких основаниях строго противопоказано технологией. Высокий уровень грунтовых вод можно понизить, проведя мероприятия по осушению, прокладке дренажных стоков и проч. Надежными слабо-пучинистыми грунтами считают те, в которых УГВ ниже глубины промерзания не менее чем на 1 метр.

Данные, приведенные в таблице, помогут составить общее представление о зависимости глубины заложения свайной колонны от характеристик грунта. Для получения более точных и надежных показателей следует провести несложный математический расчет. Принцип расчета состоит в принятии за эталон одного из показателей (например, диаметра) и расчета остальных, исходя из этих данных. Методом сравнения выбирают наиболее подходящую конфигурацию свай, из которых впоследствии формируют свайное поле.

Расчет длины висячих свай

Свайные столбы, не опирающиеся на несущий слой грунта, считают висячими. Это означает, что основную нагрузку воспринимают боковые стенки скважины,а не опорный слой грунта. Такие фундаменты предпочтительно устанавливать в районах с глубоким расположением каменистого слоя. Несущая способность таких свай не отличается от стоек аналогичного диаметра.

Если вам доступны данные геологии местности, а также тип грунта подходит для устройства буронабивных висячих свайных колонн, можно приступать к вычислению длины. Предполагаемая схема расчета выглядит следующим образом:

  • Принимаем некую среднюю ширину поперечного сечения сваи n=60 мм.
  • Рассчитываем нагрузку дома на погонный метр фундаментной плиты:

Чтобы рассчитать нагрузку на погонный метр фундамента, нужно общую нагрузку разделить на периметр. Посчитать общую нагрузку дома можно в соответствии с указаниями СНиП 2.02.01-83* или СП 22.13330.2011 – в соответствующих разделах можно найти алгоритм расчета, необходимые значения коэффициентов ветровой и снеговой нагрузки и другую необходимую информацию.

Полученное значение в кг/м и будет искомой величиной. Средняя масса одноэтажного кирпичного дома 50 тонн. Следовательно, для дома с периметром 20 метров (10×10) нагрузка на погонный метр составит 2500 кг/м.

  • Принимаем шаг колонн не менее трех диаметров и не более двух метров – для выбранного диаметра подойдет шаг 1,5 метра. Общее количество свай будет равняться 13.
  • Рассчитываем нагрузку на одну сваю: для этого разделим на величину шага свай нагрузку, воспринимаемую погонным метром фундамента. Получим значение приблизительно равное 1700 кг/м.Такой необходимый предел прочности необходимо заложить в одну сваю.
  • Для сваи площадью сечения 0,28 м2 такое значение прочности будет равняться:

F=R∙A+u∙Eycf∙fi∙hi;

Где F – несущая способность; R–сопротивление грунта, формулу расчета которого можно найти в СНиП 2.02.01-83*; А – площадь сечения сваи; Eycf,fi и hi– коэффициенты из того же СНиП; u–периметр сечения сваи, разделенный на длину.


Для рассматриваемой в примере сваи двухметровой длины предельная нагрузка в глинистом грунте будет равняться 32,3 тонны, что позволяет уменьшить количество свай за счет увеличения шага свайных колонн, или уменьшить площадь сечения каждой отдельно взятой сваи, что позволит сэкономить средства, затраченные на бетонирование скважин.

Глубина таких свай будет зависеть исключительно от характеристик верхнего слоя грунта, относительного уровня расположения грунтовых вод и глубины промерзания. Следует также учитывать данные о промерзании грунтов и положении уровня грунтовых вод. Подробные примеры расчета глубины заложения висячих свай приведены в СНиП 2.02.01-83* в разделе 2 пункт 5 или в СП 50.102-2003.

Расчет длины стоек

Буронабивные сваи повышенной глубины заложения могут работать как стойки. И хотя обычно буровые типы являются висячими, встречаются конструкции с опиранием на твердый слой грунта. Расчет длины таких свай следует производить с учетом глубины расположения прочного несущего пласта.


В сети Интернет есть масса сервисов для автоматического расчета размеров и количества буронабивных свай. Использование таких сервисов накладывает определенный риск на пользователя, поскольку алгоритм не всегда учитывает все необходимые параметры, а владельцы программного обеспечения не несут ответственности за полученный результат.

Все сопутствующие вычисления несущей способности и геометрии сваи производятся в соответствии с технологией расчета свай-стоек и схожи с приведенным ранее примером. Дополнительную информацию о проведении расчета можно получить в вышеуказанных документах.

Зависимость диаметра сваи от типа монтажа

Площадь поперечного сечения буронабивной сваи соответствует площади скважного отверстия с поправкой на пластичность грунта. Форма замоноличиваемых свай близка к идеально цилиндрической, хотя и имеет незначительные уширения вследствие непроизвольного бокового продавливания бетонной смесью слабых мест грунта. Также в процессе заливки бетонной смеси путем увеличения подающего напора могут быть созданы умышленные уширения тела сваи для придания дополнительной прочности. Особенно актуальны такие действия для висячих свай.

Помимо всего прочего, средний диаметр буронабивной сваи определяется исходя не только из расчетных показателей, но и из возможностей оборудования, предназначенного для устройства того или иного типа свай. Примерные значения диаметров в зависимости от конструктивных особенностей установки:


Устройство баретов предполагается при наличии высокопучинистых нестабильных грунтов. Делать такой фундамент для среднестатистического основания нерационально. Конструкция бура предполагает устройство только скважин диаметром либо 300 мм, либо 400 мм.

Шаг диаметров определяется набором буров, используемых для устройства скважин того или иного типа. Конструктивные особенности каждой из разновидностей буровых установок не позволяют устраивать скважины большего или меньшего диаметра, чем те, что указаны в спецификациях на проведение работ. Ознакомиться с рабочими параметрами буровых установок можно у поставщика или арендодателя.

При устройстве свайного поля и определении размеров свайных колонн следует учитывать рекомендуемый шаг свай, от которого будет зависеть частотность скважин и распределение нагрузки. Посмотрите видео, по правильному монтажу свай:

Для равномерного распределения давления массы будущего здания на фундаментную плиту, необходимо соблюдать следующие правила:

  • максимальное расстояние между буронабивными сваями не должно превышать двух метров;
  • минимальный шаг свайных колонн должен находиться в пределах трех-четырех диаметров свай – в целях предотвращения обрушения стенок соседствующих скважин в сыпучих грунтах нужно увеличить минимальный предел;
  • компоновку свайного поля следует производить с учетом расположения свай в угловых точках фундамента;
  • по результатам расчета геометрических характеристик, после компоновки, общее количество свай должно соответствовать рекомендательным шаговым значениям – в случае превышения максимального шага свай следует увеличить количество скважин и уменьшить диаметр свай до предельно возможного;
  • максимальные и минимальные размеры диаметров скважин не должны превышать допустимые для выбранного типа монтажа.

Соблюдая данные рекомендации, можно спроектировать наиболее эффективный и рациональный фундамент, не беспокоясь о его надежности. При необходимости следует обратиться за помощью к специалистам, но все расчеты можно произвести самостоятельно, без особого труда.

Свайно-ростверковый фундамент на буронабивных сваях — комбинированный тип основания из опорных свай, сформированных в грунте путем бетонирования скважин, пробуренных в земле. Вторая часть фундамента — ростверк, распределяющий нагрузку на свайное поле. Такой тип фундамента обладает высочайшей несущей способностью и может использоваться для постройки больших домов и частных коттеджей из любых материалов.

Буронабивной фундамент с ростверком позволяет возводить строения на сложных грунтах: вязких, болотистых, плывунах, пучинистых. Основание на буронабивных сваях незаменимо в сейсмически активных районах, зонах с разветвленными сетями подземных коммуникаций, а также в грунтах с повышенной щелочностью, где невозможно использовать винтовые опоры.

Преимущества конструкции:

  • повышенная устойчивость к вибрации;
  • возможность возведения при неблагоприятных геологических условиях;
  • простота монтажа;
  • отсутствие больших объемов земляных работ;
  • относительно небольшая себестоимость.

Сделать буронабивной фундамент с монолитным ростверком можно без привлечения специалистов и профессиональной техники.

Недостатки:

  • опасность неравномерной осадки опор;
  • невозможность устройства цокольного этажа и подвала.

Расчет буронабивного фундамента с ростверком

При расчете необходимо руководствоваться данными о характеристиках грунтов и материалов, указанных в СНиП 2.03.01-84, 11-23-81, 11-25-80, 2.05.03-84 и 2.06.06-85. Всего проводится три расчетные операции:

Расчет буронабивных свай

В ходе расчета определяется длина свай (глубина залегания), их сечение, количество и схема расположения. Диаметр буронабивной сваи для строительства коттеджа составляет от 15 до 40 см. Наиболее часто этот параметр принимают равным 20 см. Чтобы не проводить сложные расчеты с использованием громоздких формул, предлагаем воспользоваться готовой таблицей, в которой указана несущая способность опор различного диаметра, а также приблизительный расход бетона и арматуры:

Бурение скважины

Бурение проводится ручным буром, который заглубляется на нужную глубину. При проходке грунт не выбрасывается на поверхность, уплотняясь по стенкам.

В процессе бурения необходимо контролировать, чтобы бур входил строго перпендикулярно, не отклоняясь.

После разработки скважины, диаметр которой должен быть на 5-7 см больше, чем выбранный диаметр свай, основание тщательно трамбуется. При необходимости подсыпается песчано-гравийная подушка в 10-30 см.

Установка обсадных труб

Обсадные трубы препятствуют обсыпанию стенок скважины и обеспечивают безопасное проведение работ. По технологии на плотных глинистых грунтах и суглинках трубы можно не использовать, однако при устройстве буронабивных свай своими руками рекомендуется их установить. Внутри трубы значительно проще монтировать армирующий каркас. Кроме того упрощается процесс заливки и виброутрамбовки бетонной смеси.

В качестве обсадных труб можно использовать пластиковые, металлические или асбестоцементные изделия нужного диаметра. Если финансовые возможности позволяют, то лучше купить специальные обсадные трубы для скважин, на которых имеются подготовленные стыки с удобными соединениями. Труба строго вертикально устанавливается в скважину. Если образовался зазор между стенкой трубы и скважиной, то его необходимо засыпать грунтом с уплотнением.

Армирование

Для создания армокаркаса используется арматура 12 мм. По данным таблицы 1 при строительстве коттеджа нет необходимости использовать сложный план армирования, достаточно 4 или 6 прутов арматуры. Технология связывания армирующего каркаса очень простая: стержни располагаются по кругу, образуя окружность диаметром на 3-5 см меньше, чем размер обсадной трубы. Стержни связываются проволокой. Для закрепления можно использовать хомуты. Длина каркаса = длине обсадной трубы + 30 см. Готовый армокаркас устанавливается в скважину внутри обсадной трубы и заглубляется в грунт.

Арматурный каркас не должен соприкасаться со стенками обсадных труб!

Заливка бетонной смеси

Бетон, используемый для заливки буронабивных опор должен соответствовать СНиП 2.03.01-84 и быть не ниже класса В12,5. Для массивных домов лучше использовать бетон В15. Для заливки бетона в устье скважины опускается загрузочная воронка. Если заливать смесь без воронки, то возможно появление пустот. Заливать бетонную смесь необходимо медленно, каждый слой толщиной 0,5 м необходимо уплотнять 5-10 минут при помощи глубинного виброинструмента и только после этого заливать следующую порцию. К устройству ростверка можно приступать после того, как бетон наберет прочность — через 3-7 суток.

Устройство ростверка

Для фундамента частного дома выполняется железобетонный ленточный ростверк. Легкие конструкции, например бани, дачные брусовые домики допускают использование деревянного ростверка. Самый простой и менее трудозатратный вариант — низкий ростверк, который возвышается над уровнем земли на 0,2-0,3 м. Высокий ростверк до 0,5-0,6 м может использоваться на влажных почвах, для максимального поднятия дома от поверхности.

Этапы строительства монолитного ростверка:

Устройство основания и опалубки

Для низких ростверков применяется гравийно-песчаная подушка 10-20 см, поверх которой укладывает подбетонка — 5 см слой тощего бетона и гидроизоляция. В качестве гидроизолирующего слоя используется рубероид или гидроизол. Опалубка монтируется из досок по всей длине ростверка.

Армирование

Технология армирования ленточного ростверка подразумевает продольную укладку стержней арматуры, которые связываются как между собой, так и с арматурой буронабивных свай. Правильное армирование обеспечивает жесткое соединение буронабивной опоры с ростверком. На растянутых участках укладывается 4 стержня арматуры 20 мм, на углах — 12-15 мм. Для крепления арматуры в единый каркас применяются вертикальные пруты 5-8 мм, расстояние между ними составляет 25-30 см. Узел связки арматурных каркаса и ростверка будет выглядеть следующим образом:


Заливка бетона

Бетон класса В12,5…В15 заливается внутрь опалубки и утрамбовывается виброоборудованием. При температуре воздуха +25 С бетон необходимо периодически увлажнять. Для обеспечения постепенного затвердевания ростверк нужно закрывать полиэтиленом. Окончательно свайно-ростверковыйфундамент на сваях будет готов через 20-25 дней.

Утепление буронабивного фундамента с ростверком

Для создания благоприятного микроклимата в доме рекомендуется утеплить фундамент. Закопанные в грунт сваи утеплять не нужно, теплоизоляция необходима той части ростверка, которая расположена выше нулевого уровня. Утепление и гидроизоляция основания с заглубленным ростверком проводится в горизонтальной и вертикальной плоскости.

Теплоизоляция выполняется плитами пеноплекса или другого пенопластового утеплителя. Использовать теплоизоляторы на основе минваты нельзя, т.к. они усиленно впитывают влагу из грунта и быстро приходят в негодность. Алгоритм создания гидро- и теплоизоляции ростверка простой:

  1. Выполняется гидроизоляция: слой битума или рулонного рубероида. Гидроизолируется верхняя и боковые части ростверка.
  2. Плиты утеплителя приклеиваются клеем и крепятся дюбель-гвоздями.
  3. Заделка стыков и углов производится при помощи монтажной пены или жидкого пенополиуретана.
  4. Боковые стены ростверка отделываются штукатуркой или другим декоративным материалом.

Одновременно с теплоизоляцией делается отмостка, которая также способствует сохранению тепла и отводу влаги от фундамента.

Правильно выполненный свайно-ростверковый фундамент на буронабивных сваях прослужит не менее 100 лет. Конструкция не требует технического обслуживания и имеет доступную стоимость.

Любой начинающий строитель знает, что основой для прочности дома является его фундамент. Но установка хорошего фундамента довольно трудоемкая процедура, требующая знаний, опыта и большого количества времени, особенно, если речь идет о свайном основании. Понадобится правильно произвести расчет буронабивных свай и их несущей способности. Ведь от этого будет зависеть прочность и срок эксплуатации возведенной постройки. В данной статье будет рассмотрено, как правильно выполнить расчет несущей способности свай по грунту и какие данные для этого понадобится использовать.

Способы определения несущей способности сваи

Существует несколько методов, как произвести подобные расчеты. К ним относятся:

  1. Расчетный метод. Он не отличается высокой эффективностью, но применяется довольно часто, так как в отличие от других довольно простой.
  2. Пробные статические нагрузки. Крайне эффективная методика, но она требует много времени и сил. Довольно часто применяется профессионалами.
  3. Динамическое испытание. Производится посредством нескольких ударов молотка по установленным сваям, после чего фиксируется осадка. Преимуществом такого способа является то, что его можно использовать непосредственно на строительном участке, но в отличие от предыдущего метода, он не столь эффективен.
  4. Зондирование. Этот способ подразумевает комбинирование статического и динамического метода. Он производится путем регистрации данных несущей способности на поверхность базис с заранее установленных специальных датчиков. Оборудование стоит довольно дорого, поэтому такие вычисления зачастую выполняются только специалистами.

Расчетный способ часто используется простыми обывателями, так как для этого не потребуется специального оборудования или большого количества опыта. Понадобится лишь собрать определенные данные, которые пригодятся для расчетов. Остальные методики также могут использоваться, но для их реализации понадобятся знания и приспособления, которые у новичков в строительном ремесле зачастую отсутствуют.

Чтобы увеличить количеству знаний по теме вычисления несущей способности свай, рекомендуется к просмотру следующее видео.


Изучение параметров буронабивных свай для расчетов

При установке свайного базиса необходимо учитывать такую характеристику, как несущая способность буронабивной сваи, так как она влияет на расход материала для их монтажа и параметры качества базиса и всего здания.

Этот параметр во многом зависит от диаметра используемого столба. Например, буронабивная свая, имеющая диаметр 300 мм, может выдержать давление в 1,7 т, а свая с диаметром 500 м может выдержать даже 5 т. Небольшие изменения в размере крайне сильно увеличивают допустимую нагрузку, поэтому правильный расчет несущей способности сваи по материалу гарантирует прочное основание. Помимо этого, от данной характеристики зависит расход материалов для возведения дома.

Исходя из этого, расчет количества свай и расстояния при их монтаже является частью общих подсчетов, которые необходимо выполнить для возведения крепкого здания.


Материал производства

Размер сваи не единственный фактор, который нужно брать во внимание. При расчетах необходимо также учитывать материал, из которого изготавливалось изделие. Разновидность и марка бетона, используемого во время заливки участка, сильно влияет на износостойкость и срок эксплуатации фундамента, а, следовательно, и всего здания.

Как пример, свая, залитая бетоном М 100, может выдержать давление до 100 кг на 1 см². Это довольно хороший показатель, так как свая с основанием в 20 см и площадью в 400 см² может держать на себе до 40 т.

Помимо этого, нужно считать не только нагрузку, которая будет оказываться на столб, но и прочностные характеристики самого грунта. Это связано с тем, что при возможной нехватке столбов и повышенном давлении на почву, основание может повредиться из-за того, что некоторые сваи слишком углубятся в грунт. Если это произойдет, выполнить ремонтные работы будет довольно трудно, и без помощи специалистов обойтись уже не получится.

Чем выше прочность подстилающей почвы, тем меньше опор потребуется для создания прочного базиса. Также понадобится учитывать глубину промерзания почвы, уровень грунтовых вод, качество армирования и прочие факторы.

Расчет несущей способности свай

С подобными расчетами сможет справиться новичок, так что привлечение специалистов не потребуется. Определение несущей способности свай состоит из следующих этапов:

  1. Подготовка к процедуре, сбор информации, анализ почвы.
  2. Расчет по готовой формуле.

Подготовка к расчетам

Данные, которые будут использоваться для подсчета несущей способности свай, получают после проведения геологических процедур и расчета планируемого давления на постройку. Сбор этих данных крайне важная работа, так как именно от них зависит правильность результата подсчетов.


При подсчетах необходимо учитывать большое количество разнообразных характеристик почвы. Информацию по этим данным можно найти в СНиП, где она разделена по климатическим зонам и представлена в разном виде.

Определение несущей способности свай не может базироваться на данных, собранных на соседних участках. Даже в пределах одной земельной территории геологические показатели могут довольно сильно варьироваться. Несколько скважин по периметру участка, позволят собрать детальную информацию о качестве грунта. Ошибка в сборе данных может привести к довольно неприятным последствиям.

Вычисление массы постройки проводится с учетом климатического фактора, размещения здания на поверхности относительно направления потоков, количества осадков зимой, веса строительных материалов и оборудования.

Расчет по формуле

Несущая способность сваи по грунту, которая влияет на оказываемую нагрузку, зависит от характеристик материала, из которого она изготавливалась и прочностных параметров почвы. Для подсчетов выбирается минимальный показатель, так как он иногда увеличивается.

Несущая способность сваи вычисляется по следующей формуле: P=k o *R n *F+U*k p *F in *L i , где P – непосредственно несущая способность; k o – показатель однородности почвы; R n – возможное сопротивление почвы относительно фундамента; F -площадь базиса на сваях, см²; U – периметр участка, м; k p – рабочий коэффициент; F in -допустимое сопротивление почвы по бокам используемых свай; L i – толщина грунта, который соседствует с боковой поверхностью столба, м.

Все необходимые данные грунтов нужно искать в приложениях СНиП в предназначенном для этого разделе. Если грунт является многослойным, то возможности сопротивление поверхности высчитываются для каждого слоя по отдельности, после чего показатели складываются воедино. Также при подсчете существующей несущей способности к давлению понадобится добавлять массу самих свай и ростверка.

После того как несущая способность свай была рассчитана, вычисляется их необходимое количество для создания базиса постройки. Необходимо учитывать, что самым большим интервалом между сваями является отметка в 2 м, а самым маленьким – сумма 3-х диаметров скважин.


Когда все необходимые исчисления проведены, осуществляется заливка. Бетон для этого изготавливается прямо на участке, где проводятся строительные работы, что позволяет сэкономить на доставке. Можно использовать различные марки раствора, но необходимо следить за его качеством и сроком годности. Если будет применен некачественный бетон, это существенно повлияет на срок службы здания.

Как видно из статьи, соорудить свайный фундамент своими силами довольно трудно, но возможно. Основной процедурой является расчет несущей способности столбов. Если все подсчеты будут выполнены правильно, то и результат будет на высоком уровне, а постройка прослужит большое количество времени. Существуют специальные таблицы, в которых уже собраны многие данные. С помощью них можно пропустить трудоемкий процесс сбора большого количества данных для подсчетов.

Буронабивные сваи при возведении фундаментов применяются достаточно давно. Но лишь в последние годы особенности строительства в современных условиях сделали данную технологию одной из самых популярных и часто применяемых на самых различных объектах. Причины этого понятны и очевидны: высокие эксплуатационные и технические характеристики конструкций фундаментов, сооруженных с использованием буронабивных свай.

Буронабивные сваи – описание и область применения

Буронабивные сваи – это вертикально ориентированные железобетонные столбы, залитые непосредственно на строительной площадке и опирающиеся на несущие грунты ниже точки их промерзания.

Основная идея устройства фундаментов при помощи буронабивных свай – возведение несущих элементов не путем их забивки или вдалбливания в грунт как для забивных свай , а путем их создания непосредственно на месте, без негативных последствий, как правило, сопровождающих такую рода деятельность. Самое максимальное воздействие, оказываемое на почву – это бурение скважины, которое достаточно просто выполнить без привлечения громоздкой техники и сопутствующих этому отрицательных моментов.

Описанные выше свойства буронабивных свай делают их незаменимыми при строительстве в следующих условиях:

  • застройка жилых или промышленных кварталов в стесненных условиях города, когда устройство ленточного фундамента или монолитной плиты практически невозможно;
  • наличие слабых грунтов или сильно обводненной почвы, делающих невозможным использование других конструкций фундамента, кроме свайного;
  • строительство рядом с водоемами или на затапливаемых участках;
  • в случаях, когда геологические исследования показали глубокое залегание твердых пород, которые способны воспринять нагрузки строящегося здания;
  • в случаях сложного рельефа местности (перепад отметок по высоте, обрывы, грунты с большим содержанием камней и т.д.).

Во всех указанных случаях основным путем решения проблемы является устройство свайного фундамента. При этом предпочтительным вариантом является использование буронабивных свай.

Буронабивные сваи, по сравнению с винтовыми, имеют немаловажное преимущество – более надежную конструкцию и отсутствие проблем с коррозией, характерных для альтернативного варианта.

Всем вышеперечисленным далеко не исчерпываются достоинства технологии устройства фундаментов при помощи буронабивных свай. Но для более подробного их изучения необходимо ознакомиться с существующими разновидностями данной технологии. Также фундамент можно изготовить при помощи винтовых свай.

Перед перечислением разновидностей конструкций буронабивных свай обязательно необходимо отметить, что все работы должны выполняться в соответствии со Сводом правил СП 24.13330.2011, в котором содержится актуализированная редакция СНиП 2.02.03-85 под названием «Свайные фундаменты». Именно в этих нормативных документах четко прописаны требования к фундаментам и правила производства работ по их устройству.

Виды свай

Существует несколько классификационных признаков буронабивных свай.

Так, по особенностям конструкции они делятся на:

  • цилиндрические сваи . Имеют форму правильного цилиндра и сечение, одинаковое на всю длину конструкции;
  • сваи с опорной подошвой . Главный характерный признак – больший диаметр нижней части сваи. Подобные конструкции имеют несколько большую устойчивость и несущую способность.

По технологии обустройства буронабивные сваи делятся на:

  • сваи, выполненные без оболочки . Данный вариант может применяться только в условиях крайне устойчивых и не склонных к обрушению или осыпанию грунтов, а также тогда, когда уровень грунтовых вод минимален;
  • сваи, выполненные с применением извлекаемой или несъемной оболочки . Может применяться практически везде, в большинстве случаев используется съемная или извлекаемая оболочка в виде обсадной трубы.

Достаточно часто буронабивные сваи используются в комбинированных фундаментах совместно с последующим устройством ростверка. По месту его расположения разделяют фундаменты:

  • с низким заглубленным в почву ростверком . Обычно опускаются в грунт ниже уровня промерзания, благодаря чему приобретают повышенную несущую способность;
  • с обычным ростверком , находящимся прямо на грунте;
  • с высоким ростверком, понятым над поверхностью земли . Высота подъема может варьироваться и составлять 20-30 см. Часто применяется при строительстве частных домов на сложном рельефе местности.

Пример выполнения буронабивных свай с ростверком приведен на следующем видео:

Достоинства фундамента на сваях

Использование буронабивных свай при устройстве фундамента позволяет получить ряд преимуществ:

  • низкая стоимость работ при одновременно высокой несущей способности и надежности конструкции;
  • возможность применения практически на любом типе грунта;
  • длительный срок эксплуатации (не менее 100 лет);
  • возможность проведения работ в сжатые сроки и даже в холодное время года (при использовании специальных добавок в процессе бетонирования);
  • отсутствие динамически нагрузок на грунт, что позволяет использовать технологию рядом с существующими зданиями и сооружениями или для усиления требующих этого конструкций фундамента;
  • возможность сохранить существующее благоустройство в виду отсутствия применяемой тяжелой техники (при частном строительстве). Также важно то, что при этом варианте возможно выполнение работ своими руками, без привлечения профессиональных строителей.

Перечисленными плюсами достоинства технологии возведения фундаментов с использованием буронабивных свай не исчерпываются, однако и этого перечня достаточно для того, чтобы понять причину популярности данной технологии.

Недостатки фундамента

Как и у любой применяемой технологии, у буронабивных свай также присутствуют определенные минусы:

  • относительно большой перерасход бетона, связанный с тем, что почва рядом с изготавливаемыми сваями не уплотняется;
  • большое количество трудоемких ручных процессов и достаточно серьезная технологическая сложность производства работ;
  • необходимость тщательного контроля над всеми этапами изготовления буронабивных свай;
  • сильная зависимость несущей способности свай от качества бетона и свойств грунта (информацию о качестве бетона, а также дополнительным требованиям к бетону и его наполнителям можно узнать из этой статьи), что приводит к заложению дополнительного запаса по надежности и, соответственно, еще большему расходу бетона.

Изготовление свай

Пока не упоминалось еще одно несомненное достоинство буронабивных свай – универсальность технологии.

Она заключается в том, что ее можно одинаково успешно применять как на крупных промышленных объектах – с использованием серьезной буровой и прочей техники, так и при строительстве небольших частных домов, большую часть работ выполняя при этом вручную с минимальным привлечением машин и механизмов.

Один из примеров выполнения работ на небольшом объекте с привлечением ямобура показан на видео:

Расчет буронабивных свай и их несущая способность

При использовании технологии на серьезных крупных объектах все необходимые параметры закладываются при проектировании, обязательно выполняемом в таком случае. Несущая способность свай, изготавливаемых механизированным способом, достигает 200-400 тонн, порой доходя до показателя 600 тонн на одну сваю.

При частном строительстве обычная несущая способность сваи редко превосходит 10 тонн.

Диаметры свай

В соответствии с потребностями объекта меняется и диаметр используемых свай. Например, при частном домостроении применяются буронабивные сваи следующих диаметров и несущей способности:

Диаметр сваи, м Несущая способность, т Объем бетона, куб. м
0,40 7,536 0,2512
0,30 4,242 0,1414
0,25 2,946 0,0982
0,20 1,884 0,0628
0,15 1,062 0,0354

Каркасы и бетон для буронабивных свай. В случае применения технологии на крупных объектах используются сваи гораздо больших диаметров и значительно большей длины. Конкретные необходимые параметры берутся из проектно-сметной документации на объект.

При возведении частных домов для изготовления буронабивных свай рекомендуется использовать бетон класса В22,5 (ближайший аналог по марке – М300), в небольших зданиях и сооружениях допускается В20 и В15 (соответственно, М250 и М200). От качества материала во многом зависит качество получаемой буронабивной сваи.

Обязательным составным элементом любой буронабивной сваи является находящийся в ней сварной пространственный арматурный каркас. По требованиям СНиП он должен представлять собой продольную арматуру, равномерно распределенную по всей окружности сваи. Минимальное количество арматурных стержней – 6, каждый диаметром 18 или более мм. Используется сталь класса АIII.

Данные требования являются обязательными при строительстве крупных объектов. При возведении фундамента для частного дома или бани требования менее строгие. В большинстве случаев используются 4-6 стержней арматуры диаметром 10-12 мм, перевязанных между собой или готовые треугольные металлические каркасы.

Стоимость работ

Стоимость работ по устройству фундаментов с использованием буронабивных свай может достаточно сильно различаться в зависимости от нескольких факторов:

  • время/сезон производства работ;
  • тип грунта;
  • размеры и вид возводимого здания;
  • удаленность от места производства бетона и т.д.

Обычная стоимость изготовления стандартной сваи длиной 2 м составляет:

  • при диаметре сваи 0,15 м – 3-3,5 тыс. рублей;
  • при диаметре 0,2 м – 4,2-4,6 тыс. рублей.

Использование устройства фундаментов с применением буронабивных свай позволяет получить надежную и крайне долговечную конструкцию с высокой несущей способностью в оптимальные сроки и при минимальных затратах.

Среди множества видов фундаментов, одна конструкция сочетает простоту, прочность и низкую стоимость. В ней дорогостоящий котлован заменен несколькими шурфами, а вместо массивного монолита установлен легкий ростверк. Однако его устройство требует точного расчета.

Чем массивнее будет дом, тем на большую глубину нужно бурить шурфы, тем большее количество бетонных столбов потребуется установить. Проектирование – трудоемкий процесс. Предлагаем использовать для расчета буронабивного фундамента калькулятор – программу, позволяющую производить вычисления по произвольно вводимым параметрам.

Проектирование столбчатого фундамента из буронабивных свай. Общие требования

Прочный фундамент должен удерживать строительную конструкцию и сохранять при этом статичное (неподвижное) положение в грунте. Сваи испытывают осевую и поперечную нагрузку. На них действует сила, величина которой зависит от полной массы строительной конструкции.

Способность фундамента к противодействию нагрузкам зависит от характеристик почвы и параметров свай, а именно:

  • от механических свойств грунтов, их склонности к усадке и расползанию;
  • от плотности установки опор в грунте;
  • от глубины залегания свайных подошв;
  • от площади опорных площадок.

На несущую способность почв влияют:

Чем сыпучее грунты, чем они влажнее, чем холоднее зимы, тем массивнее должен быть фундамент: шурфы бурятся глубже, а опоры делаются толще.

Тип грунтов определяется гранулометрическими параметрами почвы — удельным и объемным весом, пластичностью, влажностью, пористостью. Наиболее точные характеристики дадут лабораторные исследования образцов грунтов. Усредненные параметры приведены в таблице.

На способность столбов выдерживать нагрузку влияют факторы:

  • площадь основания сваи;
  • класс бетона;
  • степень армирования;
  • частота расположения.

Общие правила размещения столбов (свай):

  • Интервал между столбами должен в три раза превышать диаметров сваи;
  • Максимальный интервал составляет 3 м;
  • Минимальное сечение пятки сваи при длине элемента ростверка до 3 м составляет 0,3 м.

Определение характеристик и параметров фундамента

Для того, чтобы спроектировать фундамент, необходимо произвести расчеты по следующему алгоритму:

  1. Вычислить общую массу строящегося здания.
  2. Определить типы грунтов и вычислить их физико-механические параметры. Для этого берут образцы грунта на разной глубине из пробных скважин.
  3. Определить силу, с которой дом давит на фундамент.
  4. Произвести расчет несущей способности буронабивной сваи.
  5. Определить общее количество буронабивных свай и их конфигурацию.

Определение массы здания

1. Массу подсчитывают для каждого элемента конструкции – стен, перегородок, перекрытий и кровли . Сначала рассчитывают объем:

V = L х D х H; (1)

L, D, H – соответственно длина, ширина и высота элементов дома.

2. Вычисляют вес:

m = V х p; (2)

где p – плотность материала.

Для подсчета используют нормативные значения удельных масс. Плотность бетона составляет, к примеру, 2494 кг, а удельный вес древесины – 480–520 кг.

3. Рассчитывают вес полезной нагрузки – добавляют массу полов, штукатурки, декоративных отделочных материалов. Эта величина – постоянная, нормативная. Она зависит от общего размера помещений дома на всех этажах. Значение веса полезной нагрузки равно 150 кг/м2.

4. Увеличивают общую массу на коэффициент запаса прочности: конструкция должна противодействовать давлению снега зимой. Величину коэффициента берут из СП «Нагрузки и воздействия». Для средней полосы России значение коэффициента надежности равно:

  • 1,3 – для бетонных монолитных сооружений;
  • 1,2 – для сборных кирпичных и плитных конструкций;
  • 1,1 – для домов из бруса и бревен;
  • 1,05 – для сооружений из стали.

Определение физико-механических параметров грунтов

1. Несущую способность грунта можно определить по таблице 1:

Таблица нормативных сопротивлений грунтов под торцом опоры, кг/м2

Свая опирается на грунт не только нижним торцом, но и всей боковой поверхностью. Это сопротивление также учитывается при расчете фундамента.

Таблица нормативных сопротивлений грунтов вдоль поверхности опоры, кг/м2

Важно: глубина шурфов должна быть на 0,3–0,5 м большей, чем глубина промерзания. Обобщенные сведения о параметрах промерзания грунтов изложены в СП 131.13330.2012 Строительная климатология. Для выполнения расчетов пользуются актуализированными данными из СНиП 23-01-99 (действует с 2013 года).

Определение параметров, влияющих на несущую способность свай

Опоры изготавливаются из бетона марки 100 и выше. Для того, чтобы опора выдерживала поперечные нагрузки, ее армируют стальными прутками. Чтобы перераспределить и выровнять между сваями весовую нагрузку, придать конструкции жесткость, вершины опор обвязывают бетонным ростверком. Монолитную ленту армируют стальными прутками.

Определение количества опор фундамента и их конфигурации

Длину внутренних простенков прибавляют к общей величине протяженности фундамента. Впоследствии на базе этой величины будут определены интервалы между осями опор. Вычисления трудоемки, но их можно доверить компьютеру: машина точно рассчитает параметры фундамента.

Минимальное количество опор определено нормативной документацией: их необходимо обязательно установить в углах здания и в точках пересечения несущих стен.

Онлайн калькулятор позволит:

  • произвести расчет параметров ростверка;
  • определить необходимый объем бетона;
  • задать нагрузку, которую может выдержать одна свая;
  • установить диаметр, глубину залегания и количество опор для фундамента.

Пример: Определение сопротивляемости буронабивной сваи по материалу и по грунту

1) По материалу (Рмат):

Рмат = Кур*Sосн*Rм; (3)

Кур – индекс однородности грунтов (справочно равен 0,6);

Sосн – площадь основания опоры, м2 (определяется расчетным путем – 3,14 * r2); Площадь основания сваи диаметром полметра равна 0,196 м2;

– величина сопротивления бетона (табличная); Для бетона эта величина равна 400 кг/м2.

Подставляя значения в формулу, получаем: Рмат = 47 тонн.

2) По грунту (Ргр):

Ргр = Ког*Кур*(Rгосн*Sосн*p + Кду* Rгбок*h); (4)

Ког – индекс однородности грунта (справочно равен 0,7);

Кур – индекс условий работы (принимается за 1);

p – периметр (для трехметровой сваи с диаметром 0,5 м периметр равен 0,157 м);

Rгосн – сопротивление грунта, приведено в таблице 2; Для глины составляет 90 т/м2;

Sосн – площадь основания опоры, м2 (определена ранее – 0,196 м2);

Rгрп – величина сопротивления грунта под пяткой опоры (табличная); Для твердой глины это – 90 т/м2;

Кду – дополнительный индекс условий – 0,8;

Rгбок – значение несущей способности грунтов сбоку. Определяется как средняя взвешенная для каждой точки поверхности с интервалом в 1 метр. В нашем случае равно 3,85 тонн/м2.

h – толщина первого слоя грунта, прилегающего к фундаменту. Ее расчетное значение составит 2,3м.

Подставляя цифровые величины в формулу (2), получаем сопротивление сваи по грунту – 26,5 тонн. Эта величина – меньше, чем прочность материала. Ее и берут в качестве исходной для определения количества свай.

Пример: Расчет количества опор. Алгоритм вычислений

1) Определяем весовую нагрузку на 1 м ростверка (Нпм). Для этого полную массу дома относим к общему периметру ростверка.

Нпм = Мд/Пф; (5)

2) Вычисляем межосевое расстояние между опорами: находим отношение значения несущей способность сваи к нагрузке на погонный метр фундамента.

Осв = Ргр/ Нпм; (6)

В нашем случае опора способна выдержать вес в 26 тонн. Значит, на каждый метр ростверка, при соблюдении минимального интервала размещения свай в 3 метра, может прийтись до 8,33 тонн. На практике удельное давление, оказываемое обычным одноэтажным строением на фундамент, составляет 5,5–7 тонн.

Этот расчет буронабивных свай показал: мы можем выбрать более легкую конструкцию фундамента.