Микросхема таймер NE555 радиолюбительские конструкции. Подробное описание, применение и схемы включения таймера NE555 555 схема включения

Потребовалось мне сделать регулятор скорости для пропеллера. Чтобы дым от паяльника сдувать, да морду лица вентилировать. Ну и, для прикола, уложить все в минимальную стоимость. Проще всего маломощный двигатель постоянного тока, конечно, регулировать переменным резистором, но найти резюк на такой малый номинал, да еще нужной мощности это надо сильно постараться, да и стоить он будет явно не десять рублей. Поэтому наш выбор ШИМ + MOSFET.

Ключ я взял IRF630 . Почему именно этот MOSFET ? Да просто у меня их откуда то завелось штук десять. Вот и применяю, так то можно поставить что либо менее габаритное и маломощное. Т.к. ток тут вряд ли будет больше ампера, а IRF630 способен протащить через себя под 9А. Зато можно будет сделать целый каскад из вентиляторов, подсоединив их к одной крутилке — мощи хватит:)

Теперь пришло время подумать о том, чем мы будем делать ШИМ . Сразу напрашивается мысль — микроконтроллером. Взять какой-нибудь Tiny12 и сделать на нем. Мысль я эту отбросил мгновенно.

  1. Тратить такую ценную и дорогую деталь на какой то вентилятор мне западло. Я для микроконтроллера поинтересней задачу найду
  2. Еще софт под это писать, вдвойне западло.
  3. Напряжение питания там 12 вольт, понижать его для питания МК до 5 вольт это вообще уже лениво
  4. IRF630 не откроется от 5 вольт, поэтому тут пришлось бы еще и транзистор ставить, чтобы он подавал высокий потенциал на затвор полевика. Нафиг нафиг.
Остается аналоговая схема. А что, тоже неплохо. Наладки не требует, мы же не высокоточный девайс делаем. Детали тоже минимальные. Надо только прикинуть на чем делать.

Операционные усилители можно отбросить сразу. Дело в том, что у ОУ общего назначения уже после 8-10кГц, как правило, предельное выходное напряжение начинает резко заваливаться, а нам надо полевик дрыгать. Да еще на сверхзвуковой частоте, чтобы не пищало.


ОУ лишенные такого недостатка стоят столько, что на эти деньги можно с десяток крутейших микроконтроллеров купить. В топку!

Остаются компараторы, они не обладают способностью операционника плавно менять выходное напряжение, могут только сравнивать две напруги и замыкать выходной транзистор по итогам сравнения, но зато делают это быстро и без завала характеристики. Пошарил по сусекам и компараторов не нашел. Засада! Точнее был LM339 , но он был в большом корпусе, а впаивать микросхему больше чем на 8 ног на такую простую задачу мне религия не позволяет. В лабаз тащиться тоже было влом. Что делать?

И тут я вспомнил про такую замечательную вещь как аналоговый таймер — NE555 . Представляет собой своеобразный генератор, где можно комбинацией резисторов и конденсатором задавать частоту, а также длительность импульса и паузы. Сколько на этом таймере разной хрени сделали, за его более чем тридцатилетнюю историю… До сих пор эта микросхема, несмотря на почтенный возраст, штампуется миллионными тиражами и есть практически в каждом лабазе по цене в считанные рубли. У нас, например, он стоит около 5 рублей. Порылся по сусекам и нашел пару штук. О! Щас и замутим.


Как это работает
Если не вникать глубоко в структуру таймера 555, то несложно. Грубо говоря, таймер следит за напряжением на конденсаторе С1, которое снимает с вывода THR (THRESHOLD — порог). Как только оно достигнет максимума (кондер заряжен), так открывается внутренний транзистор. Который замыкает вывод DIS (DISCHARGE — разряд) на землю. При этом на выходе OUT появляется логический ноль. Конденсатор начинает разряжаться через DIS и когда напряжение на нем станет равно нулю (полный разряд) система перекинется в противоположное состояние — на выходе 1, транзистор закрыт. Конденсатор начинает снова заряжаться и все повторяется вновь.
Заряд конденсатора С1 идет по пути: «R4->верхнее плечо R1 ->D2 «, а разряд по пути: D1 -> нижнее плечо R1 -> DIS . Когда мы крутим переменный резистор R1 то у нас меняются соотношения сопротивлений верхнего и нижнего плеча. Что, соответственно, меняет отношение длины импульса к паузе.
Частота задается в основном конденсатором С1 и еще немного зависит от величины сопротивления R1.
Резистор R3 обеспечивает подтяжку выхода к высокому уровню — так так там выход с открытым коллектором. Который не способен самостоятельно выставить высокий уровень.

Диоды можно ставить любые совершенно, кондеры примерно такого номинала, отклонения в пределах одного порядка не влияют особо на качество работы. На 4.7нанофарадах, поставленных в С1, например, частота снижается до 18кГц, но ее почти не слышно, видать слух у меня уже не идеальный:(

Покопался в закромах, которая сама расчитывает параметры работы таймера NE555 и собрал схему оттуда, для астабильного режима со коэффициентом заполнения меньше 50%, да вкрутил там вместо R1 и R2 переменный резистор, которым у меня менялась скважность выходного сигнала. Надо только обратить внимание на то, что выход DIS (DISCHARGE) через внутренний ключ таймера подключен на землю, поэтому нельзя было его сажать напрямую к потенциометру , т.к. при закручивании регулятора в крайнее положение этот вывод бы сажался на Vcc. А когда транзистор откроется, то будет натуральное КЗ и таймер с красивым пшиком испустит волшебный дым, на котором, как известно, работает вся электроника. Как только дым покидает микросхему — она перестает работать. Вот так то. Посему берем и добавляем еще один резистор на один килоом. Погоды в регулировании он не сделает, а от перегорания защитит.

Сказано — сделано. Вытравил плату, впаял компоненты:

Снизу все просто.
Вот и печатку прилагаю, в родимом Sprint Layout —

А это напряжение на движке. Видно небольшой переходный процесс. Надо кондерчик поставить в параллель на пол микрофарады и его сгладит.

Как видно, частота плывет — оно и понятно, у нас ведь частота работы зависит от резисторов и конденсатора, а раз они меняются, то и частота уплывает, но это не беда. Во всем диапазоне регулирования она ни разу не влазит в слышимый диапазон. А вся конструкция обошлась в 35 рублей, не считая корпуса. Так что — Profit!

Каждый радиолюбитель не раз встречался с микросхемой NE555. Этот маленький восьминогий таймер завоевал колоссальную популярность за функциональность, практичность и простоту использования. На 555 таймере можно собрать схемы самого различного уровня сложности: от простого триггера Шмитта, с обвеской всего в пару элементов, до многоступенчатого кодового замка с применением большого количества дополнительных компонентов.

В данной статье детально ознакомимся с микросхемой NE555, которая, несмотря на свой солидный возраст, по-прежнему остается востребована. Стоит отметить, что в первую очередь данная востребованность обусловлена применением ИМС в схемотехнике с использованием светодиодов.

Описание и область применения

NE555 является разработкой американской компании Signetics, специалисты которой в условиях экономического кризиса не сдались и смогли воплотить в жизнь труды Ганса Камензинда. Именно он в 1970 году сумел доказать важность своего изобретения, которое на тот момент не имело аналогов. ИМС NE555 имела высокую плотность монтажа при низкой себестоимости, чем заслужила особый статус.

Впоследствии её стали копировать конкурирующие производители из разных стран мира. Так появилась отечественная КР1006ВИ1, которая так и осталась уникальной в данном семействе. Дело в том, что в КР1006ВИ1 вход останова (6) имеет приоритет над входом запуска (2). В импортных аналогах других фирм такая особенность отсутствует. Данный факт следует учитывать при разработке схем с активным использованием двух входов.

Однако в большинстве случаев приоритеты не влияют на работу устройства. С целью снижения мощности потребления, ещё в 70-х годах прошлого века был налажен выпуск таймера КМОП-серии. В России микросхема на полевых транзисторах получила название КР1441ВИ1.

Наибольшее применение 555 таймер нашёл в построении схем генераторов и реле времени с возможностью задержки от микросекунд до нескольких часов. В более сложных устройствах он выполняет функции по исключению дребезга контактов, ШИМ, восстановлению цифрового сигнала и так далее.

Особенности и недостатки

Особенностью таймера является внутренний делитель напряжения, который задаёт фиксированный верхний и нижний порог срабатывания для двух компараторов. Ввиду того что делитель напряжения нельзя исключить, а пороговым напряжением нельзя управлять, область применения NE555 сужается.

Таймеры, собранные на КМОП-транзисторах, лишены перечисленных недостатков и не нуждаются в монтаже внешних конденсаторов.

Основные параметры ИМС серии 555

Внутреннее устройство NE555 включает в себя пять функциональных узлов, которые можно видеть на логической диаграмме. На входе расположен резистивный делитель напряжения, который формирует два опорных напряжения для прецизионных компараторов. Выходные контакты компараторов поступают на следующий блок – RS-триггер с внешним выводом для сброса, а затем на усилитель мощности. Последним узлом является транзистор с открытым коллектором, который может выполнять несколько функций, в зависимости от поставленной задачи.

Рекомендуемое напряжение питания для ИМС типа NA, NE, SA лежит в интервале от 4,5 до 16 вольт, а для SE может достигать 18В. При этом ток потребления при минимальном Uпит равен 2–5 мА, при максимальном Uпит – 10–15 мА. Некоторые ИМС 555 КМОП-серии потребляют не более 1 мА. Наибольший выходной ток импортной микросхемы может достигать значения в 200 мА. Для КР1006ВИ1 он не выше 100 мА.

Качество сборки и производитель сильно влияют на условия эксплуатации таймера. Например, диапазон рабочих температур NE555 составляет от 0 до 70°C, а SE555 от -55 до +125°C, что важно знать при конструировании устройств для работы в открытой окружающей среде. Более детально ознакомиться с электрическими параметрами, узнать типовые значения напряжения и тока на входах CONT, RESET, THRES, и TRIG можно в datasheet на ИМС серии XX555.

Расположение и назначение выводов

NE555 и её аналоги преимущественно выпускаются в восьмивыводном корпусе типа PDIP8, TSSOP или SOIC. Расположение выводов независимо от корпуса – стандартное. Условное графическое обозначение таймера представляет собой прямоугольник с надписью G1 (для генератора одиночных импульсов) и GN (для мультивибраторов).

  1. Общий (GND). Первый вывод относительно ключа. Подключается к минусу питания устройства.
  2. Запуск (TRIG). Подача импульса низкого уровня на вход второго компаратора приводит к запуску и появлению на выходе сигнала высокого уровня, длительность которого зависит от номинала внешних элементов R и С. О возможных вариациях входного сигнала написано в разделе «Одновибратор».
  3. Выход (OUT). Высокий уровень выходного сигнала равен (Uпит-1,5В), а низкий – около 0,25В. Переключение занимает около 0,1 мкс.
  4. Сброс (RESET). Данный вход имеет наивысший приоритет и способен управлять работой таймера независимо от напряжения на остальных выводах. Для разрешения запуска необходимо, чтобы на нём присутствовал потенциал более 0,7 вольт. По этой причине его через резистор соединяют с питанием схемы. Появление импульса менее 0,7 вольт запрещает работу NE555.
  5. Контроль (CTRL). Как видно из внутреннего устройства ИМС он напрямую соединен с делителем напряжения и в отсутствие внешнего воздействия выдаёт 2/3 Uпит. Подавая на CTRL управляющий сигнал, можно получить на выходе модулированный сигнал. В простых схемах он подключается к внешнему конденсатору.
  6. Останов (THR). Является входом первого компаратора, появление на котором напряжения более 2/3Uпит останавливает работу триггера и переводит выход таймера в низкий уровень. При этом на выводе 2 должен отсутствовать запускающий сигнал, так как TRIG имеет приоритет перед THR (кроме КР1006ВИ1).
  7. Разряд (DIS). Соединен напрямую с внутренним транзистором, который включен по схеме с общим коллектором. Обычно к переходу коллектор-эмиттер подключают времязадающий конденсатор, который разряжается, пока транзистор находится в открытом состоянии. Реже используется для наращивания нагрузочной способности таймера.
  8. Питание (VCC). Подключается к плюсу источника питания 4,5–16В.

Режимы работы NE555

Таймер 555 серии работает в одном из трёх режимов, рассмотрим их более детально на примере микросхемы NE555.

Одновибратор

Принципиальная электрическая схема одновибратора приведена на рисунке. Для формирования одиночных импульсов, кроме микросхемы NE555, понадобится сопротивление и полярный конденсатор. Схема работает следующим образом. На вход таймера (2) подают одиночный импульс низкого уровня, который приводит к переключению микросхемы и появлению на выходе (3) высокого уровня сигнала. Продолжительность сигнала рассчитывается в секундах по формуле:

По истечении заданного времени (t) на выходе формируется сигнал низкого уровня (исходное состояние). По умолчанию вывод 4 объединен с выводом 8, то есть имеет высокий потенциал.

Во время разработки схем нужно учесть 2 нюанса:

  1. Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
  2. Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.

На работу генератора одиночных импульсов можно влиять извне двумя способами:

  • подать на Reset сигнал низкого уровня, который переведёт таймер в исходное состояние;
  • пока на вход 2 поступает сигнал низкого уровня, на выходе будет оставаться высокий потенциал.

Таким образом, с помощью одиночных сигналов на входе и параметров времязадающей цепочки можно получать на выходе импульсы прямоугольной формы с чётко заданной длительностью.

Мультивибратор

Мультивибратор представляет собой генератор периодических импульсов прямоугольной формы с заданной амплитудой, длительностью или частотой, в зависимости от поставленной задачи. Его отличие от одновибратора состоит в отсутствии внешнего возмущающего воздействия для нормального функционирования устройства. Принципиальная схема мультивибратора на базе NE555 показана на рисунке.

В формировании повторяющихся импульсов участвуют резисторы R 1 , R 2 и конденсатор С 1 . Время импульса (t 1), время паузы(t 2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам: Из данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t 1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7.

В datasheet на микросхемы часто оперируют величиной, обратной скважности - Duty cycle (D=1/S), которую отображают в процентах.

Схема работает следующим образом. В момент подачи питания конденсатор С 1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С 1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 U ПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t 1), который продолжается до нижнего порогового значения 1/3 U ПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.

Прецизионный триггер Шмитта с RS-триггером

Внутри таймера NE555 встроен двухпопроговый компаратор и RS-триггер, что позволяет реализовывать прецизионный триггер Шмитта с RS-триггером на аппаратном уровне. Входное напряжение делится компаратором на три части, при достижении каждой из которых происходит очередное переключение. При этом величина гистерезиса (обратного переключения) равна 1/3 U ПИТ. Возможность применения NE555 в качестве прецизионного триггера востребована в построении систем автоматического регулирования.

3 наиболее популярные схемы на основе NE555

Одновибратор

Практический вариант схемы одновибратора на TTL NE555 приведен на рисунке. Схема питается однополярным напряжением от 5 до 15В. Времязадающими элементами здесь являются: резистор R 1 – 200кОм-0,125Вт и электролитический конденсатор С 1 – 4,7мкФ-16В. R 2 поддерживает на входе высокий потенциал, пока некоторое внешнее устройство не сбросит его до низкого уровня (например, транзисторный ключ). Конденсатор С 2 защищает схему от сквозных токов в моменты переключения.

Активизация одновибратора происходит в момент кратковременного замыкания на землю входного контакта. При этом на выходе формируется высокий уровень длительностью:

t=1,1*R 1 *C 1 =1,1*200000*0,0000047=1,03 c.

Таким образом, данная схема формирует задержку выходного сигнала относительно входного на 1 секунду.

Мигание светодиодом на мультивибраторе

Отталкиваясь от рассмотренной выше схемы мультивибратора можно собрать простую светодиодную мигалку. Для этого к выходу таймера последовательно с резистором подключают светодиод. Номинал резистора находят по формуле:

R=(U ВЫХ -U LED)/I LED ,

U ВЫХ – амплитудное значение напряжения на выводе 3 таймера.

Количество подключаемых светодиодов зависит от типа применяемой микросхемы NE555, её нагрузочной способности (КМОП или ТТЛ). Если необходимо мигать светодиодом мощностью более 0,5 Вт, то схему дополняют транзистором, нагрузкой которого станет светодиод.

Реле времени

Схема регулируемого таймера (электронное реле времени) показана на рисунке.
С её помощью можно вручную задавать длительность выходного сигнала от 1 до 25 секунд. Для этого последовательно с постоянным резистором в 10 кОм устанавливают переменный номиналом в 250 кОм. Ёмкость времязадающего конденсатора увеличивают до 100 мкФ.

Схема работает следующим образом. В исходном состоянии на выводе 2 присутствует высокий уровень (от источника питания), а на выводе 3 низкий уровень. Транзисторы VT1, VT2 закрыты. В момент подачи на базу VT1 положительного импульса по цепи (Vcc-R2-коллектор-эмиттер-общий провод) протекает ток. VT1 открывается и переводит NE555 в режим отсчета времени. Одновременно на выходе ИМС появляется положительный импульс, который открывает VT2. В результате ток эмиттера VT2 приводит к срабатыванию реле. Пользователь может в любой момент прервать выполнение задачи, кратковременно закоротив RESET на землю.

Транзисторы SS8050, приведенные на схеме, можно заменить на КТ3102.

Рассмотреть все популярные схемы на основе NE555 в одной статье невозможно. Для этого существуют целые сборники, в которых собраны практические наработки за всё время существования таймера. Надеемся, что приведенная информация послужит ориентиром во время сборки схем, в том числе нагрузкой которых служат светодиоды.

Читайте так же

Всем привет. Сегодня я хочу рассказать вам о микросхеме 555. Её история началась ещё в далеком 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер» (The IC Time Machine). В те времена это была единственная «таймерная» микросхема, которая была доступна массовому потребителю. Сразу после выхода 555 завоевала бешеную популярность и её начали выпускать почти все производители полупроводников. Отечественные производители тоже выпускали данную микросхему под названием КР1006ВИ1 .

Что это за чудо?

Микросхема выпускается в двух вариантах корпуса - пластиковом DIP и круглом металлическом. Правда встретить 555 в круглом металлическом корпусе в наши времена очень сложно, чего не скажешь о версии в пластиковом DIP корпусе. Внутри корпуса с восемью выводами скрываются транзисторы, диоды и резисторы. Не будем вдаваться в доскональное изучение 555, но про ножки этой микросхемы я расскажу более подробно. Всего ножек 8.

1. Земля . Вывод, который во всех схемах нужно подключать к минусу питания.
2. Триггер , он же запуск. Если напряжение на пуске падает ниже 1/3 Vпит, то таймер запускается. Ток, потребляемый входом, не превышает 500нА.
3. Выход . Напряжение выхода примерно на 1,7 В ниже напряжения питания, когда он включен. Максимальная нагрузка, которую может выдержать выход - 200 мА.
4. Сброс . Если подать на него низкий уровень напряжения (меньше 0,7 В), то схема переходит в исходное состояние не зависимо от того, в каком режиме находится таймер на данный момент. Если в схеме не нужен сброс, то рекомендуется подключить этот вывод к плюсу питания.
5. Контроль . Этот вывод позволит нам получить доступ к опорному напряжению компаратора №1. Используется этот вывод очень редко, а вися в воздухе может сбивать работу, поэтому в схеме его лучше всего присоединить к земле.
6. Порог , он же стоп. Если напряжение на этом выходе выше 2/3 Vcc, то таймер останавливается и выход переводится в состояние покоя. Стоит заметить, что работает выход только тогда, когда вход выключен.
7. Разряд . Этот выход соединяется с землей внутри самой микросхемы, когда на выходе микросхемы низкий уровень и закрыт, когда на выходе высокий уровень. Может пропускать до 200 мА и иногда используется как дополнительный выход.
8. Питание . Данный выход нужно подключать к плюсу питания. Микросхема поддерживает напряжение в пределах 4,5-16 В. Может работать от обычной 9В-батарейки или от проводка USB.

Режимы

Ну что же пришло время поведать вам о режимах микросхемы 555. Их всего 3 и о каждом я расскажу более подробно.
Моностабильный

При подаче сигнала на вход нашей микросхемы, она включается, генерирует выходной импульс заданной длины и выключается, ожидая входного импульса. Важно, что после включения микросхема не будет реагировать на новые сигналы. Длину импульса можно рассчитать по формуле t=1.1*R*C. Пределов по длительности импульсов нет - как по минимальной, так и по максимальной длительности. Есть некоторые практические ограничения, которые можно обойти, но стоит задуматься над тем, нужно ли это и не проще ли выбрать другое решение. Итак, минимальные значения, установленные практическим образом для R составляет 10кОм, а для С - 95пФ. Можно и меньше, но при этом схема начнет поглощать много электричества.

Нестабильный мультивибратор

В этом режиме все довольно таки просто. Управлять таймером не нужно. Он все сделает сам - сперва включится, подождет время t1, потом выключится, подождет время t2 и начнет все заново. На выходе у нас получится забор из высоких и низких состояний. Частота с которой будет колебаться зависит от параметров величин R1,R2 и C и определяется она по формуле F= 1,44/((R1+R2)C). В течение времени t1 = 0.693(R1+R2)C на выходе будет высокий уровень, а в течение времени 2 = 0.693R2C - низкий.

Бистабильный
В данном режиме наша микросхема 555 используется как выключатель. Нажал одну кнопку - выход включился, нажал другую - выключился.

Конец

Думаю Вам уже надоел теоретический материал и Вы хотите приступить к практике. Саму микросхему и детали к ней Вы можете купить в любой радиолавке. Ну, а если Вам вдруг лень идти в магазин Вы можете заказать все детали на этом сайте . Забыл сказать, что посылка будет идти к Вам где-то месяц. Спасибо за внимание, если Вам понравилась моя статья, то позже я обязательно напишу ещё одну, где я расскажу какие гаджеты можно сделать на микросхеме 555.

Микросхема 555 появилась сорок лет назад и стала фактически первым таймером на широком рынке. С тех пор из-за бешеной популярности микросхемы ее начали выпускать почти все производители электронных компонентов, и несмотря на почтенный возраст, 555 до сих пор выходит многомиллионными тиражами.

В этом году прошел конкурс проектов (555contest.com), использующих ее для решения самых разных задач. Заявки принимались в нескольких категориях: искусство, сложные проекты, минималистичные и полезные гаджеты. Призовой фонд составлял около $1500.

Среди нескольких сотен проектов была видеоигра, собранная на целой горсти 555; контроллер для пинбола; электрогитара; устройство, не дающее спать соседям; замок, отпирающий дверь по секретному стуку и еще куча интересного.

Если ты хоть раз в жизни держал паяльник и даже отличишь резистор от транзистора, а со старушкой 555 еще не знаком, то нужно срочно исправить ситуацию. Что это за зверь? Внутри пластикового корпуса с восемью выводами скрывается пара десятков транзисторов, диодов и резисторов, но в доскональное изучение работы таймера вдаваться не будем, пусть он останется для нас черным ящиком, из которого торчат ножки. А вот ножки обсудим.

  1. Земля. Здесь все просто, во всех схемах ее нужно подключать к минусу питания.
  2. Триггер, он же пуск. Если напряжение на пуске падает ниже одной трети напряжения питания (Vcc) - например, нажимается кнопка, притянутая к земле, - то схема стартует.
  3. Выход. Задача таймера простая - генерировать прямоугольные импульсы заданной длины (длительность задается парой сопротивлений и конденсатором). Напряжение выхода примерно на 2 В ниже напряжения питания, когда он включен, и почти ноль (меньше 0,5 В), когда выключен. Максимальная нагрузка, которую способен выдержать выход - около 200 мА. Этого достаточно для небольшого динамика, парочки светодиодов или маленького реле.
  4. Сброс. Если подать на него низкий уровень (меньше 0,7 В), то схема переходит в исходное состояние, и выход становится низким. Если в схеме сброс не нужен, то лучше притянуть его к плюсу, чтобы он не скидывал случайно (например, от прикосновения пальцем).
  5. Контроль. Напряжение, приложенное к этой ноге, может изменять длительность выходов таймера. Но используется он редко, а висящий в воздухе - может сбивать работу, поэтому в схемах лучше присоединить к земле через небольшой керамический конденсатор на 10 нФ.
  6. Порог, он же стоп. Если напряжение на нем выше 2/3 Vcc, то таймер останавливается и выход переводится в выключенное состояние. Работает, только если вход при этом выключен.
  7. Разряд. Этот выход соединяется с землей внутри микросхемы, когда на выходе низкий уровень, и используется, чтобы разрядить конденсатор временной цепочки. Может пропускать до 200 мА и иногда используется как дополнительный выход.
  8. Питание. Нужно подключить к плюсу питания. Микросхема поддерживает напряжения от 4,5 В до 16 В. Можно запитать от обычной 9В-батарейки, можно от блока питания детских игрушек или от проводка USB.

Заводим лошадку. Режимы

1. Моностабильный.

При подаче сигнала на вход микросхема включается, генерирует выходной импульс заданной длины и выключается, ожидая нового входного импульса. Важно, что после включения микросхема не будет реагировать на новые сигналы, сколько бы их не посылали. Длину импульса можно посчитать по простой формуле t=1,1R1 C4. Чтобы получить время в секундах, сопротивление нужно подставлять в мегаомах, а емкость - в микрофарадах.

Например, при C4=100 мкФ и R1=2,2 МОм период будет примерно 4 минуты. Эту цифру можно менять в очень широких пределах: от 0,000001 секунды до 15 минут. В теории можно и еще больше, но на практике возникнут проблемы.

2. Нестабильный мультивибратор.

В этом режиме таймером и управлять-то не надо, он сам себе хозяин - сперва включится, подождет время t1, потом выключится, подождет время t2, и все заново. На выходе получается забор из высоких и низких состояний, что в лучших традиция ASCII-арта можно представить так: ПП ПП П. Частота, с которой будет колебаться вся система, зависит от параметров RC-цепочки (точнее - от величин R2, R3 и С1) и ее можно посчитать по формуле f = 1,44/((R3 + 2R2)C1). В течение времени t1 = 0,693 (R3 + R2)C1 на выходе будет высокий уровень, а в течение t2=0,693(R2)C1 - низкий.

3. Бистабильный.

В этом режиме микросхема используется как выключатель. Нажал одну кнопку - выход включился, нажал другую - выключился. Довольно теоретического экскурса, наверняка ты уже захотел приступить к практике.

Собирать простые железки удобно на макетной плате без пайки - ее, как и все детали, можно прикупить в любой радиолавке, за пару сотен рублей. Но у меня почта ближе, чем магазин, и я заказывал все детали из Гонконга на sureelectronics.net, хотя этот вариант на любителя - нужно много терпения: посылка будет идти почти месяц.

Здравствуй, свет!

Задача №1: собрать «хэллоу ворлд» - моргалку светодиодиком. Все просто, как и в мире софта, но в железе даже для такой безделушки можно придумать полезное применение.

От каких деталей уж совсем никак не отвертеться? Во-первых, сам таймер 555 (на схеме IC1). Подойдет таймер любого производителя, но чтобы экспериментировать на макетке - бери в корпусе DIP с длинными ножками. Его названия у разных производителей незначительно отличаются, но три пятерочки в них есть всегда. Например, та, что я использую в примерах этой статьи, называется NE555N. Существуют и другие версии схемы, 556 и 558, у которых в одном корпусе стоит 2 и 4 таймера соответственно.

Они тоже подойдут для всех примеров, просто у них больше ног и расположены они иначе. Во-вторых, потребуются конденсаторы: электролитический C1 емкостью от 5 до 10 мкФ и керамический C3 на 10 нФ. Еще будут нужны: светодиод (LED1) любого цвета и к нему токоограничительный резистор (R5) на 300-600 Ом (у меня 470 Ом), а также резисторы, задающие частоту R1 на 1 кОм и R2 на 10 кОм. Последнее из обязательной программы - маленькая кнопка (типа той, что ставят в мыши и на всяческие приборные панели).

Еще на схеме есть конденсатор C2 на 100 мкФ, который перекинут от плюса к минусу. Если у тебя с питанием все хорошо (например, ты используешь батарейку), то необходимости в нем нет, а с дешевым сетевым адаптером без такого конденсатора никуда. В примерах я использовал пятивольтовый блок питания от детской китайской игрушки, на выпрямителе которого производитель сэкономил - в результате без этой сглаживающей емкости схема не работала вовсе. Поэтому на всех схемах в статье этот конденсатор есть, а ставить его или нет - решать тебе.

Также при желании можно опустить и конденсатор C3, который притягивает пятую ногу к земле, но в этом случае стабильность гарантировать не стану.
Схема работает в нестабильном режиме и собрана таким образом, что пока подключена к питанию, то постоянно генерирует выходные импульсы, а как только мы нажимаем кнопку, то замыкаем ее выход на светодиод и ее работа становится видна. Теперь можешь собрать все по схеме.

При нажатии кнопки светодиод должен бодро начать моргать. Если не заработало, то проверяй контакты и полярности. На микросхеме 555 у одного из краев есть выемка: поставь схему так, чтобы выемка была слева, тогда ножки в нижнем ряду будут нумероваться слева направо от 1 до 4, а в верхнем - справа налево от 5 до 8. У светодиода более длинный выход должен подключаться к плюсу, а более короткий - к минусу. Если у диода ножки одной длины, то на помощь придет плоская литиевая батарейка, вроде той, что стоят на материнских платах. Подключи светодиод и так и эдак, когда он засветится - плюс и минус у него будут расположены, как на батарейке.

Если не заработал в обоих положениях, то либо диод горелый, либо это не диод - фототранзисторы могут выглядеть точно так же, как светодиоды. У электролитических конденсаторов минус, как правило, помечен светлой полосой на корпусе. Для остальных деталей полярность не важна.

Теперь о практической пользе. В некоторых играх бывает необходимо щелкать по левой кнопке беспрестанно, натирая мозоли на пальце, но это не наш метод. Можно собрать эту схему покомпактнее, припаяв детали напрямую к выходам микросхемы, и запихнуть в корпус любой USB-мыши - места там, как правило, хватает. Из схемы нужно только выкинуть светодиод с его резистором, а третью ножку микросхемы подпаять напрямую к плюсу левой кнопки мыши.

Определить, где в мышиной кнопке плюс (зеленая точка на фото), а где - минус, обычно несложно: контакт с нулем более толстый и идет к черному проводу от USB, а другой - это плюс, к нему и подпаивайся. Для питания подключайся к красному и черному проводам, уходящим в сторону компьютера, их контакты также помечены на фото. Просверли слева в корпусе мышки отверстие (так, чтобы было удобно дотягиваться до него большим пальцем) и установи туда кнопку при помощи термоклеевого пистолета. Все, теперь можешь нещадно валить врагов.

Создаем электронную музыку

Еще одна схемка, в которой таймер также работает в режиме мультивибратора, но задача у нее другая. Она перенесет тебя в прошлое, в прокуренные студии отцов андеграундной электронной музыки, которым приходилось самим ваять устройства, при помощи которых они создавали бессмертные хиты.

Изменения в предыдущей схеме придется сделать совсем небольшие. Вместо светодиода с его резистором здесь установлен динамик, подключенный к земле через конденсатор C4 - он нужен, чтобы отфильтровать постоянную составляющую выхода и прогонять через динамик только переменный ток. Для максимальной громкости этот конденсатор должен быть электролитическим, емкостью порядка 10 мкФ, но подобный звук будет резать ухо, и если такой задачи не стоит, поставь керамический на 100 нФ, будет потише. Можешь взять динамик из сломанных больших наушников или бипер из старого системного блока. Пьезодинамик (в виде круглой металлической пластинки) также подойдет, плюс ему не нужен конденсатор С4.

Поскольку звуковые частоты несколько выше, чем частота моргания диода, то RC-цепочку тоже придется чутка переделать. Конденсатор C1 заменить на керамический 100 нФ, резистор R2 заменить на 1 кОм и последовательно с ним поставить переменный резистор R3 на 10 кОм. У переменных резисторов обычно 3 ножки, расположенные в ряд, но тебе нужно подключить только две - любую из крайних и центральную. Такие параметры не позволят частоте убежать за слышимый диапазон на всем диапазоне R3. Резистором выставляй частоту, нажимай кнопку и слушай, что звучит. При некоторой сноровке получится музыка.

Сервомашинка как удлинитель пальца

Еще одна схема в режиме мультивибратора. Здесь при помощи таймера 555 ты будешь управлять сервомашинкой. Крути переменный резистор, а машинка будет крутить все, что угодно. Сервоприводы (или просто сервы) используются обычно в радиоуправляемых модельках машин/вертолетов/самолетов, но это не значит, что ты не найдешь им другого применения.

Для начала тебе нужно эту машинку где-нибудь достать. Неплохой выбор недорогих серв есть в популярном китайском онлайнмагазинчике DealExtreme (s.dealextreme.com/search/servo), все свои я заказывал именно там. В наших магазинах они тоже есть, но заметно дороже.

Типичная хобби-серво имеет три провода: черный или коричневый минус питания, который нужно подключить к контакту SERVO-3 на схеме, красный плюс - к SERVO-1, желтый или белый для управляющих команд - к SERVO-2.

Серво ждет, что по сигнальному проводу 50 раз в секунду будут приходить короткие импульсы длиной от 0,9 до 2,1 мс, и длительность сигнала подскажет, на какой угол нужно отклониться. Параметры RC-цепочки в схеме подобраны таким образом, чтобы обеспечить именно такие сигналы. Поскольку время импульса должно быть меньше, чем время между ними, то в схему нужно добавить диод D1. В схеме указан 1n4148, так как он один из самых распространенных, но можно заменить его на другой. Определить полярность диода просто - перпендикулярная полоска на корпусе соответствует черте на схеме.

Таймер 555 - штука простая, хоть 15 вольт на вход подавай, ей все нипочем. А сервомашинка требует более бережного отношения и работает только в диапазоне напряжений от 4,8 В до 6 В. Так что если для питания ты использовал батарейку на 9 В, то придется напряжение понижать. С этой задачей отлично справляется стабилизатор 7805, который срезает все лишнее и оставляет на выходе чистые 5 В. Правда, все лишние вольты он попросту преобразует в тепло и может сильно нагреваться. Хотя, нагреваясь, стабилизатор поддерживает приятный теплый микроклимат в комнате, его не стоит применять в проектах, питающихся от батареек - прожорливый он. Включить его в схему просто: если ты возьмешь его за выходы и будешь читать надписи на корпусе, то первая нога окажется слева - ее нужно подсоединить к плюсу батареи, вторую - к общей земле, а третья - выход +5 В.

Собрав эту штуку, ты сможешь не просто тестировать сервы на работоспособность, а еще удаленно управлять выключателями и открывать замки.

Постоянная кнопка

Порой необходимо, чтобы твоя схемка работала, как телевизор: нажал кнопочку, она включилась, нажал еще раз - выключилась. И эту задачу тоже можно решить на 555. Внутри микросхемы запрятан триггер, который для этой цели можно использовать.

Основная часть схемы уже не должна вызывать у тебя особых вопросов, остановлюсь лишь на выходе третьей ножки, а именно - резисторе R4 и транзисторе T1. Ведь мы делаем кнопку, а значит - она должна уметь пропускать ток, и не факт, что 200 мА, на которые способен 555, будет достаточно. Здесь в качестве ключа используется небольшой NPN-транзистор 2N3904, который способен пропускать те же 200 мА, что и сам таймер, и смысла в нем немного, но его всегда можно заменить на более мощный МОП-транзистор - например, IRF630, который позволит подключить нагрузку до 9А. Правда, для такого транса напряжение придется увеличить на схеме до 12 вольт, иначе затвор не откроется.

Еще не очень круто применять такой выключатель в мобильных устройствах, так как даже в выключенном состоянии он потребляет ток в 3-6 мА, что заметно подсаживает батарею.

Гаджет для приготовления чая

Когда я только начал знакомиться с linux’ом, мне попалась небольшая, но очень важная программа для приготовления чая. В ней можно выбрать сорт чая, и по прошествии времени, необходимого для заварки, она начинала помаргивать иконкой в трее и пищать. Из какого дистрибутива была программа, я уже не помню, но она пару раз помогла мне выпить не остывший чай. С программами всегда так: снес операционку - и нет ее, а железка на столе куда надежнее!

Для реализации этой штуковины понадобится целых два таймера 555. Один (тот, что на схеме слева) будет отсчитывать 4 минуты, за которые заварка превращается в благоуханный напиток, а другой - генерировать импульсы для пищалки.

Генератор на IC2 трудолюбиво и непрерывно генерирует импульсы. Рассмотрим подробнее первый таймер. Он подсоединен в моностабильном режиме. В нормальном состоянии сразу после включения питания на выходе 3 низкий уровень - он притянут к земле, а значит - пищит динамик и горит светодиод LED2 (на самом деле светодиод моргает, но очень быстро, и это незаметно). Как только нажимается кнопка S1, таймер включается, на выходе 3 становится высокий уровень, зажигается светодиод LED1, а динамик выключается, ведь LED2 хоть и «свето-», но все-таки диод, и в обратную сторону ток пропускать не будет. Так продолжается, пока конденсатор C4 заряжается через резистор R1. Когда напряжение на ножке 6 станет больше 2/3 Vcc, то таймер выключится и вновь запищит бипер.

Схему можно чутка модифицировать, добавив последовательно R1 - переменный резистор на 500 кОм, тогда можно будет регулировать время заварки для разных сортов чая.

Уверен, этих схем тебе хватит для вдохновения. Если нет - попробуй поискать чтонибудь на сайте instructables.com . Также со схемами может помочь программа 555 Timer Pro schematica.com/555_Timer_design/555_Timer_PRO_EX.htm , которая позволяет в пару кликов рассчитать детали для любого режима (правда, стоит она «всего» $29, но если постараться, то можно найти в сети более старую бесплатную версию).

Электронные интегральные схемы - такая отрасль нашей науки и техники, возможности которой еще далеко не исчерпаны. Видимо, это и есть ростки того самого искусственного интеллекта, о котором так много уже сказано. Причем, если наш природный интеллект строится на элементах - нейронах - которые можно назвать электронно-химическими, то созданные руками человека интегральные схемы в природе не встречаются. Это чистое изобретение человеческого разума. Оно получено в результате долгой работы по совершенствованию самых обыкновенных электроприборов, которые понадобились людям сразу после открытия электричества - выключателей, резисторов, конденсаторов, полупроводниковых приборов. Совершенствование шло как в направлении усложнения схем, так и в стремлении уместить большое количество элементов на ограниченной площади или в ограниченном объеме. А также создать из все тех же схемных примитивов нечто универсальное, долгоиграющее и омниполезное.

Таймер NE555

История изобретения этого таймера показывает, что настоящие шедевры делаются не всегда в самые лучшие для изобретателей времена, и часто даже в совершенно не высокотехнологичных условиях. Ганс Камензинд в свои 33 года кроме служебных обязанностей имел мечту. Это не всегда бывает по вкусу начальству, и ему пришлось уволиться. Свой шедевр он придумал, сидя в гараже в 1971 году, а через год микросхема на восьми ножках бойко пошла в производство и продажу. Схема простая и, как оказалась, полезная. Быть может, не последнюю роль в удаче сыграло и название, которое толком и объяснить не могут: почему NE - от названия фирмы Signetics? Почему 555 - потому что им полюбилась пятерка? Таймер? - да, но не такой, как обычные. Те, что всегда только безостановочно тикают импульсами, а этот может выдать очень точный интервал времени, и не в каких-то привычных в импульсной технике микросекундах, а в достаточно ощутимом интервале: взять и включить лампочку на несколько секунд.

Схема, как часто и все гениальное, оказалась на стыке двух техник: импульсной и аналоговой.

Аналоговые - операционные усилители - усиливают сигнал до нужного стандарта (2 на входах (двухпороговый компаратор) и 1 на выходе). А в середине работает импульсный RS-триггер, который может как генерировать импульсы (мультивибратор), так и выдавать одиночный импульс заданной протяженности (одновибратор).

И все очень легко регулируется - практически, соотношением параметров двух резисторов и одной емкости, подключенных к микросхеме на входах, а также подачей других сигналов на входы.

Видимо, схема имеет какое-то неуловимо удачное соотношение простоты управления и простоты конструкции, что в сочетании с неожиданным многообразием работы элементов и придало ей популярности на протяжении стольких лет. Потому что перечисленные свойства, как следствие, выразились в совсем даже невысокой стоимости и в применимости в разных схемах - и ширпотребовских, и профессиональных. Они хороши для использования в детских игрушках, реле времени, кодовых замках, космических аппаратах. А ежегодные продажи исчисляются до сих пор миллиардами штук по всему миру. Причем за все время схема не претерпела практически никаких изменений. По какой причине слово «эволюция» под рисунком выше и взято в кавычки. Таймер 555 выпускают многие фирмы по всему миру. Известны и отечественные аналоги NE555 - микросхема КР1006ВИ1 и ее КМОП вариант КР1441ВИ1.

Функциональная схема и описание прибора

Функционально таймер состоит из 5 компонентов. Выводов у схемы больше, чем внутренних блоков, что и говорит о возможной гибкости включения в различные схемные решения с участием данной микросхемы.

Входной внутренний делитель напряжения задает опорные напряжения для двух компараторов - верхнего и нижнего. RS-триггер принимает их сигналы и формирует выходной сигнал, который отправляет на усилитель мощности. Еще имеется дополнительный транзистор с выведенным наружу коллектором, который используется для подключения внешней времязадающей цепочки.

Выводы схемы расположены одинаково, независимо от исполнения микросхемы

Описание выводов схемы

Приведенный ниже даташит содержит выводы и подаваемые на них сигналы, откуда становится немного понятной работа микросхемы. Хотя очень многое зависит от ее подключения.

  1. Земля –

Минусовой общий вывод питания

Плюсовой вывод питания – 8

  1. Запуск

Вход компаратора №2 (нижнего).

Сигнал низкого уровня – аналоговый или импульсный.

Таймер срабатывает на сигнал (аналоговый или импульсный) низкого уровня (порог – 1/3 Vпит)

На 3 выводе появляется выходной сигнал высокого уровня

  1. Выход

Выходной сигнал (высокий уровень) зависит от питания: Vпит – 1,7 В

Низкий уровень (нет сигнала) – примерно 0,25 В

Временная характеристика выходного сигнала определяется внешней времязадающей цепочкой, состоящей из резистора (или резисторов) и емкости.

  1. Сброс

Срабатывает по сигналу низкого уровня (≤ 0,7 В)

Немедленный сброс выходного сигнала

Входной сигнал не зависит от напряжения питания

  1. Контроль

Управление опорным напряжением компаратора №1

Величина напряжения управляет длительностью выходных импульсов (одновибратор) или их частотой (мультивибратор).

  1. Останов

Сбрасывающий сигнал высокого уровня – аналоговый или импульсный

  1. Разряд

Цепь разряда времязадающего конденсатора С

  1. Питание +

Плюсовой провод питания

Vпит = от 4,5 В до 18 В

Минусовой – 1

Применение: варианты подключения NE555 (или NE555 аналогов)

Одновибратор

Емкость С и резистор R задают длительность импульса t, выдаваемого схемой в ответ на сигнал по входу Input (вывод 2). Напряжение питания влияет не на длительность, а на амплитуду выходного сигнала. При выдаче импульса изменение входного сигнала схемой не воспринимается. Через время t схема выдает задний фронт выходного сигнала и возвращается в исходное состояние, после чего готова снова реагировать на входной сигнал. Таким образом, она может выделять информативные всплески (низкого уровня) на фоне помех, так как сигнал на входе в общем случае аналоговый. Может работать как антидребезговая схема.

Генератор импульсов (мультивибратор)

Мультивибратору не нужно подавать на вход никаких сигналов, он начинает работать сразу после включения питания.

Разряженный в начале конденсатор С задает на вход низкий уровень, отчего таймер срабатывает, выдавая на выход высокий потенциал. Его длительность определяется зарядкой конденсатора C через резисторы R1 и R2. Далее происходит разрядка C через R2 и вход 7, что и определяет длительность паузы на таймере. После этого все повторяется, и на выходе получаются импульсы заданной напряжением питания амплитуды и длительностями t 1 и t 2 , то есть частотой f

и скважностью S = T/t 1 . Скважность в данном простейшем подключении более 2 быть не может, так как время импульса t 1 всегда > времени паузы t 2 .